首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1524篇
  免费   312篇
  国内免费   560篇
化学   992篇
晶体学   53篇
力学   188篇
综合类   40篇
数学   375篇
物理学   748篇
  2024年   8篇
  2023年   51篇
  2022年   46篇
  2021年   34篇
  2020年   29篇
  2019年   49篇
  2018年   51篇
  2017年   46篇
  2016年   62篇
  2015年   59篇
  2014年   110篇
  2013年   75篇
  2012年   69篇
  2011年   68篇
  2010年   62篇
  2009年   112篇
  2008年   97篇
  2007年   88篇
  2006年   131篇
  2005年   81篇
  2004年   51篇
  2003年   64篇
  2002年   59篇
  2001年   50篇
  2000年   48篇
  1999年   78篇
  1998年   64篇
  1997年   69篇
  1996年   57篇
  1995年   61篇
  1994年   36篇
  1993年   40篇
  1992年   58篇
  1991年   40篇
  1990年   55篇
  1989年   42篇
  1988年   21篇
  1987年   32篇
  1986年   29篇
  1985年   29篇
  1984年   19篇
  1983年   12篇
  1982年   13篇
  1981年   9篇
  1980年   3篇
  1979年   5篇
  1964年   2篇
  1963年   4篇
  1958年   2篇
  1956年   3篇
排序方式: 共有2396条查询结果,搜索用时 15 毫秒
131.
有机磁性液晶化合物的研究进展   总被引:2,自引:0,他引:2  
介绍了磁性液体材料和分子磁体材料的分类和发展;重点评述了近年来出现的一种集磁性和液晶性于一身的新型多功能材料--有机磁性液晶材料的产生、类型、分子结构及研究进展;对有机棒状磁性液晶分子的合成方法和应用前景进行了展望.  相似文献   
132.
1 催化裂化技术的重要性及存在的问题 1.1 催化裂化技术的重要性 催化裂化是指在石油炼制过程中, 在热和催化剂的作用下使重油发生裂化反应, 转化为裂化气、汽油和柴油等的过程. 从20世纪90年代开始, 随着世界原油的重质化和劣质化日趋严重, 而且市场对重质燃料的需求越来越少, 使重油催化裂化得以迅速发展. 据美国石油炼制协会统计, 目前重油催化裂化(RFCC)约占催化裂化总能力的25%, 并将逐年增加, 重油加工将成为21世纪催化裂化发展的重要方向.  相似文献   
133.
利用邻二苯基膦苯甲醛分别与多种手性二胺的缩合反应,设计合成了一系列新型手性四齿胺膦配体.这类多齿胺膦配体含有两个软的磷原子和两个硬的氮原子,具有丰富的配位化学性能和优秀的不对称诱导能力.本文综述了手性胺膦金属络合物催化剂在不对称转移氢化反应、氧化动力学拆分反应、烯烃的不对称环氧化反应和不对称环丙烷化反应、不对称D-A反应中的应用.  相似文献   
134.
超级铝热剂的制备、表征及其燃烧催化作用   总被引:3,自引:0,他引:3  
用纳米铝粉和纳米氧化铅、纳米氧化铜和纳米三氧化二铋为原料,采用超声分散复合的方法,制备了纳米超级铝热剂Al/PbO、Al/CuO和Al/Bi2O3。采用X射线粉末衍射(XRD)、扫描电镜及能谱分析(SEM-EDS)和红外光谱(IR)对原料和产物的物相、组成、形貌和结构进行分析表征;运用差示扫描量热仪(DSC)评估三种超级铝热剂与双基推进剂主要组分的相容性;研究了3种超级铝热剂对双基推进剂燃烧性能的影响。结果表明,Al/PbO、Al/CuO和Al/Bi2O3与推进剂主要组分硝化棉(NC)、硝化棉/硝化甘油(NC/NG)混合物和吉纳(DINA)的相容性均良好,而与黑索今(RDX)和1,3-二甲基-1,3-二苯基脲(C2)相对较为敏感;含三种纳米超级铝热剂的双基推进剂表现出优异的燃烧性能。  相似文献   
135.
张利锋  杨四娟  高国华 《催化学报》2011,(12):1875-1879
以离子液体1-丁基-3-甲基咪唑乙酸盐([bmim]OAc)为催化剂,以芳香胺和碳酸丙烯酯为原料,一步合成了5-甲基-3-芳基噁唑烷-2-酮.系统考察了反应温度、反应时间以及催化剂用量对反应性能的影响.在优化的反应条件下,5-甲基-3-苯基噁唑烷-2-酮的收率可达99%.研究了离子液体阴阳离子结构对反应性能的影响,发现...  相似文献   
136.
利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响.结果表明:与前驱体中未加入葡萄糖所制备的材料相比,掺葡萄糖后样品颗粒分布相对均匀,粒径变小,D50从11.56减小至9.94 μm,比表面积增加近1倍.经0.05C充放电活化后,未掺葡萄糖和掺葡萄糖样品0.2C放电比容量分别为183.4、211.6 mAh·g-1,2C容量分别为其0.2C的62.2%、77.6%.1C循环50次后放电比容量分别为133.3、173.6 mAh·g-1,容量保持率分别为95.1%、100%.掺葡萄糖可降低首次不可逆容量损失,提高材料的倍率性能与循环稳定性,减少电荷传递阻抗、Warburg阻抗以及双电层弥散效应,但不改变材料的晶型结构.  相似文献   
137.
P-RE-USY沸石的稳定性、酸性和裂化反应特性   总被引:5,自引:0,他引:5  
采用NH3-TPD、FT-IR、XRD和元素分析方法研究了稀土和磷改性沸石P-RE-USY的酸性、水热稳定性,并在小型固定流化床反应装置中评价了含有这种改性沸石催化剂的反应性能。结果表明,由于磷促进了稀土离子由超笼向方钠石笼中的迁移,阻止了沸石在水热条件下的脱铝作用,从而改善了P-RE-USY沸石的水热稳定性;P-RE-USY沸石酸性分布更集中在中强酸范围,有利于发生氢转移反应,而强酸数量的降低有利于减少焦炭形成,改善了焦炭选择性。评价表明含有这种改性沸石的催化剂显示了优越的降低汽油烯烃的效果,柴油产率可增加2.31%。  相似文献   
138.
色谱是一门以分离分析为主,旨在追求复杂事物纯而净的分析化学的重要分支学科。其经过百余年的发展,理论与技术日臻完善,集科学、技术与艺术于一体。近年来,色谱及其与质谱、核磁共振波谱、原子发射光谱等联用技术极大推动了环境、食品、石油化工、生物医药等领域中所涉及复杂体系的研究进展。作为我国传统文化的核心代表,中医药为中国乃至世界人民的健康服务逾千年,从古至今历经上千年临床考验,疗效经久不衰。近年来,中国政府强调继承与创新,加大推进中医药的现代化与国际化。然而中药自身的多成分协同起效复杂性及其与机体时刻新陈代谢变化的复杂性往往相互作用,由此形成了药物-机体复杂巨系统。该复杂巨系统的分析研究是中医药现代化进程的关键瓶颈。色谱的优势在于复杂成分的分离与分析,此恰能为上述复杂巨系统提供技术支撑,色谱及其联用技术已成为推动中医药分子化、数字化、信息化乃至现代化的主流技术。该文综述了色谱及其联用技术在中药复杂体系、复杂生命过程及药物-机体复杂巨系统中的应用进展,介绍了笔者研究团队对中医药现代化的认识、研究思路和研究工作,最后笔者结合对于百年色谱与千年中医药文化之现代化交织的感悟,对色谱技术在此领域的前景做出了展望。  相似文献   
139.
建立了纺织品中喹啉和异喹啉的气相色谱-质谱检测方法。采用乙酸乙酯为溶剂,超声提取,经蒸发浓缩和定容后,以GC-MS测定。结果表明,喹啉和异喹啉在0.05~10.0 mg/L范围内线性良好(r0.999 0),回收率为82.0%~99.8%,相对标准偏差(n=6)为0.9%~3.8%;方法的定量下限为0.05 mg/kg。该方法灵敏度高、简便、高效、准确,可以满足纺织品中喹啉和异喹啉的检测需求。  相似文献   
140.
三种改性方法对纳米ZnO催化剂粉体的光催化性能的影响   总被引:1,自引:0,他引:1  
以SnCl4·5H2O、ZnNO3·6H2O、HCl、NaOH、FeCl3·6H2O为原料,采用共沉淀法制备Fe掺杂纳米ZnO、纳米ZnO/SnO2和Fe掺杂纳米ZnO/SnO2三种复合催化剂粉体,以降解甲基橙溶液反应为模型,研究了不同比例的ZnO/SnO2复合、Fe元素掺杂量以及SnO2复合Fe元素掺杂同时作用对纳米ZnO粉体光催化活性的影响,采用X射线衍射(XRD)测试方法对不同量Fe元素掺杂纳米ZnO粉体进行了表征.采用透射电镜对三种改性方法ZnO粉体进行表征.结果表明:随着ZnO/SnO2的物质的量比增加,ZnO/SnO2复合光催化剂的催化活性先增加,然后降低;随着Fe掺杂量的增加,纳米ZnO粉体的光催化活性先增加,然后降低.三种改性方法都能提高纳米ZnO粉体的光催化活性,其中Fe元素掺杂以及SnO2复合改性纳米ZnO粉体的光催化效果最好,物相为ZnO和SnO2,颗粒尺寸为15 ~20 nm,分散性好,比表面积为68.7m2/g.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号