首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   289篇
  国内免费   351篇
化学   596篇
晶体学   17篇
力学   101篇
综合类   23篇
数学   200篇
物理学   619篇
  2024年   6篇
  2023年   22篇
  2022年   37篇
  2021年   49篇
  2020年   28篇
  2019年   31篇
  2018年   35篇
  2017年   30篇
  2016年   23篇
  2015年   25篇
  2014年   70篇
  2013年   45篇
  2012年   46篇
  2011年   42篇
  2010年   48篇
  2009年   64篇
  2008年   74篇
  2007年   60篇
  2006年   78篇
  2005年   57篇
  2004年   57篇
  2003年   62篇
  2002年   37篇
  2001年   31篇
  2000年   34篇
  1999年   24篇
  1998年   31篇
  1997年   40篇
  1996年   39篇
  1995年   46篇
  1994年   33篇
  1993年   38篇
  1992年   27篇
  1991年   41篇
  1990年   36篇
  1989年   14篇
  1988年   10篇
  1987年   13篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1978年   3篇
  1962年   4篇
  1960年   4篇
  1958年   5篇
  1956年   3篇
  1955年   2篇
排序方式: 共有1556条查询结果,搜索用时 0 毫秒
31.
阳离子聚丙烯酰胺的聚合方法研究进展   总被引:1,自引:0,他引:1  
论文评述和探讨了目前阳离子聚丙烯酰胺的几种常见的聚合方法,包括水溶液聚合、反相乳液聚合、分散聚合及光引发聚合,对各聚合方法的优缺点进行了比较,并且对各种方法的产业化进行了分析,提出了光引发聚合法的发展前景,认为有必要深入开展光引发聚合机理及相关技术研究。  相似文献   
32.
采用β-环糊精诱导十二烷基苯磺酸钠(SDBS)/聚丙烯酰胺(HPAM)复配体系,通过产生的激发光谱信号检测该复配体系中SDBS和HPAM的含量。考察了β-环糊精对SDBS与HPAM的诱导作用、SDBS与HPAM之间的干扰影响、溴水氧化HPAM时间、甲酸钠还原溴水时间等因素对二元复配体系定量的影响。结果表明,SDBS的最大诱导吸收波长为225 nm,溴水氧化HPAM的最佳时间为10 min,甲酸钠还原过量溴水的最佳时间为5~10 min。在水溶液体系中β-环糊精兼具显著提高复配体系中SDBS和HPAM的检测精度和定量抗干扰的作用,该方法的定量误差在2.0%以内。  相似文献   
33.
以N-(甲氧甲基)-N-(三甲基硅甲基)苄胺和马来酸二甲酯为原料通过环加成、氢化铝锂还原、TSOH催化脱水、氢氧化钯/碳催化氢化脱苄基四步反应,设计并合成了一种含氮、氧的杂环化合物--顺式六氢-1H-呋喃并[3,4-C]吡咯,其结构经1H NMR, 13 C NMR和MS(ESI)表征。   相似文献   
34.
总结了非平衡溶剂化新理论和在量子化学软件Q-Chem中基于含时密度泛函理论(TD-DFT)实现溶剂效应下计算电子吸收和发射光谱的数值解方法.采用该方法计算了染料敏化太阳能电池(DSSCs)中三苯胺型有机染料■在真空和乙腈溶剂中的电子结构与光谱性质,研究发现,π共轭桥上碳碳双键的个数和溶剂效应会促进光电转换.  相似文献   
35.
以三价铁盐为铁源,采用多元醇还原法在低温下制备出了具有不同长径比的棒状LiFePO4材料.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、交流阻抗谱(EIS)和恒电流充放电测试等手段分析了不同回流反应时间下制备出的前驱体和最终的LiFePO4/C样品.结果表明:回流反应时间对LiFePO4的形貌和特性有明显的影响.通过把回流反应时间从4 h延长至16 h,材料的形貌由不规则的短棒状颗粒变为规则的长棒状颗粒,且棒的直径明显变小.当回流反应时间为10 h时,样品复合了多种形貌,有利于电子的传输,在低倍率下具有优秀的性能,0.1C放电比容量为163 mAh g-1;当回流反应时间为16 h时,样品具有最大的长径比,有利于锂离子的扩散,在高倍率下具有良好的性能,1C、3C、5C、10C、20C倍率下放电比容量分别为135、125、118、110、98 mAh g-1,循环性能良好,几乎无衰减.  相似文献   
36.
电化学界面动力学决定了所有电化学反应性质.从原子和分子水平上多维度原位观察电极的表界面电化学反应动态过程对于典型的电化学储能技术(电解槽、燃料电池)中催化剂的结构设计、合成和筛选具有重要意义,但是复杂的电化学界面以及微量、快速的反应中间态信号给界面电化学反应动态过程研究带来了极大的挑战.同步辐射傅里叶变换红外光谱(SR-FTIR)具有独特的分子指纹识别功能,可以用来确定电化学界面的活性物质,结合对纳米材料的局部原子结构高度敏感的同步辐射X射线吸收精细结构(SR-XAFS)光谱可以开展界面电化学反应过程的实时动态研究,有助于指导设计用于高效高能量密度能源系统的先进电催化剂.本文基于近年来本课题组的研究工作,系统地介绍了获得高质量的电化学反应过程中同步辐射红外关联谱学实验结果的策略,及其应用于电催化反应动态过程研究成果,其中主要选用当前热门的金属有机框架(MOF)纳米材料以及金属单原子催化剂(SACs)作为研究对象.最后,对原位同步辐射实验方法发展及其针对电化学反应动态过程的研究进行了展望,旨在通过揭示电化学反应的动态机理来指导和合成高效稳定的催化材料.  相似文献   
37.
在锂离子电池电解液1 mol·L-1 LiPF6/(碳酸乙烯酯(EC)+碳酸二乙酯(DEC)+碳酸甲乙酯(EMC) (1:1:1,体积比))中分别添加1,2-二甲氧基-4-硝基苯(DMNB1)和1,4-二甲氧基-2-硝基苯(DMNB2)作为防过充添加剂.采用循环伏安(CV)、恒流充放电、过充测试、电化学阻抗谱(EIS)、扫描电子显微镜(SEM)等手段研究了DMNB1和DMNB2 的防过充效果, 以及添加剂与LiNi1/3Co1/3Mn1/3O2材料的相容性. 结果表明: DMNB1 和DMNB2 的氧化电位都在4.3 V (vs Li/Li+)以上, 且均能显著提高电池的过充保护性能. 100%过充和5 V截止电压过充测试表明, DMNB1 的防过充性能优于DMNB2. 采用基础电解液、添加0.1 mol·L-1 DMNB1 和添加0.1 mol·L-1DMNB2 电解液的LiNi1/3Co1/3Mn1/3O2/Li 电池, 0.2C 倍率下循环100 次, 容量保持率分别为98.4%、95.9%和68.1%. 证明硝基在添加剂苯环上的取代位置和其电化学性能之间有着密切联系.  相似文献   
38.
张峰  谭赞  闫柏任  潘顶伍  鲍小平 《有机化学》2014,(12):2499-2504
设计合成了一个新型的含1,8-萘酰亚胺信号单元的咔唑磺酰肼类阴离子受体1,荧光和UV-vis光谱滴定实验表明,1在DMSO中能选择性识别具有重要生物学意义的F-,Ac O-和2 4H PO-;受体1与这些阴离子形成1∶1的配合物,且它们的结合常数均大于103 L?mol-1.有趣的是,在含水10%(V/V)的DMSO中1对F-表现出了专一性识别.DMSO-d6中的核磁滴定表明,在F-浓度较低时,受体1通过五重分子间氢键作用与其产生了有效结合.  相似文献   
39.
以3-羧基-1-(4-羧基苄基)吡啶溴酸盐((H2L) Br)分别与Co (Ⅱ)和Cd (Ⅱ)金属盐反应,制备了2个配合物[Co (L)2(H2O)4]·2H2O (1)和[Cd (L)2(H2O)]·3H2O (2)。晶体结构分析揭示配合物1是一个中性的单核配合物,其拥有丰富的并可作为超分子合成子的氢键和π-π作用力组分。对于1,单核的[Co (L)2(H2O)4]实体首先通过氢键形成具有孔道结构的二维层,该二维层进一步通过π-π堆积作用形成三维的多孔配位超分子。配合物2具有一维的“之”字形链状结构,该链通过悬挂的L配体之间的π-π作用力形成一维梯形结构。该一维梯形链进一步通过梯形边之间存在的2种π-π堆积作用形成波浪状的二维层。二维层进一步通过8种类型的O—H…O氢键连接形成三维的超分子结构。根据拓扑的观点,配合物2中的一维链采取胶合板排列。此外,配合物2显示了强的紫外荧光发射,平均寿命为2.54 ns。  相似文献   
40.
采用改进“Alder法”,以吡咯和对溴苯甲醛为原料,合成了meso-四(4-溴代苯基)卟啉(TBPP),其结构和性能经UV-Vis, FL和IR表征。研究了硝基苯用量、溶剂用量、溶剂浓缩量、投料比η[n(对溴苯甲醛)/n(吡咯)]和反应时间对TBPP收率的影响。结果表明:在最佳反应条件[吡咯25 mmol, η=1.05/1,丙酸70 mL,硝基苯2 mL,溶剂浓缩量30 mL,回流反应40 min]下,TBPP收率30.68%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号