首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   16篇
化学   255篇
力学   7篇
数学   30篇
物理学   59篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   12篇
  2020年   4篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   7篇
  2014年   11篇
  2013年   15篇
  2012年   13篇
  2011年   42篇
  2010年   15篇
  2009年   9篇
  2008年   29篇
  2007年   32篇
  2006年   20篇
  2005年   25篇
  2004年   8篇
  2003年   15篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1977年   1篇
  1858年   1篇
排序方式: 共有351条查询结果,搜索用时 31 毫秒
1.
2.
3.
Biphasic geminate rebinding of CO to myoglobin upon flash photolysis has been associated to ligand distribution in hydrophobic cavities, structurally detected by time-resolved crystallography, xenon occupancy, and molecular simulations. We show that the time course of CO rebinding to human hemoglobin also exhibits a biphasic geminate rebinding when the protein is entrapped in wet nanoporous silica gel. A simple branched kinetic scheme, involving the bound state A, the primary docking site C, and a secondary binding site B was used to calculate the microscopic rates and the time-dependent population of the intermediate species. The activation enthalpies of the associated transitions were determined in the absence and presence of 80% glycerol. Potential hydrophobic docking cavities within the alpha and beta chains of hemoglobin were identified by computational modeling using xenon as a probe. A hydrophobic pocket on the distal side of the heme, corresponding to Xe4 in Mb, and a nearby site that does not have a correspondence in Mb were detected. Neither potential xenon sites on the proximal side nor a migration channel from the distal to proximal site was located. The small enthalpic barriers between states B and C are in very good agreement with the location of the xenon sites on the distal side. Furthermore, the connection between the two xenon sites is relatively open, explaining why the decreased mobility of the protein with viscosity only slightly perturbs the energetics of ligand migration between the two sites.  相似文献   
4.
The present study focuses on predicting the concentration of intracellular storage polymers in enhanced biological phosphorus removal (EBPR) systems. For that purpose, quantitative image analysis techniques were developed for determining the intracellular concentrations of PHA (PHB and PHV) with Nile blue and glycogen with aniline blue staining. Partial least squares (PLS) were used to predict the standard analytical values of these polymers by the proposed methodology. Identification of the aerobic and anaerobic stages proved to be crucial for improving the assessment of PHA, PHB and PHV intracellular concentrations. Current Nile blue based methodology can be seen as a feasible starting point for further enhancement. Glycogen detection based on the developed aniline blue staining methodology combined with the image analysis data proved to be a promising technique, toward the elimination of the need for analytical off-line measurements.  相似文献   
5.
Poly[9,9′‐dihexylfluorene‐2,7‐diyl)‐6,6″‐(2,2′:6′,2″‐terpyridine)] (LaPPS75) and its complexes with neodymium were synthesized and characterized. Magnetic measurements showed that the noncomplexed polymer presented a ferromagnetic contribution due to the formation of π stacking, and that in absence of those, the ferromagnetic behavior is suppressed. The pristine polymer, the complexed one and a low‐molecular‐weight model compound with the same structure of the complexed site in the parent polymer were studied. The observed behavior found is presented and discussed, the most important finding was that when a conjugated chain is used as a host for the metallic ion, an amplification of four times for the magnetization is achieved, using the same metallic content for complexed polymer and model compound for comparison. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 304–311  相似文献   
6.
7.
8.
It remains unknown if the oxidative stress can be regulated by low‐level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i‐I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM‐1) and peroxisome proliferator‐activated receptor‐y (PPARy) were measured by RT‐PCR. The lung immunohistochemical localization of ICAM‐1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM‐1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i‐I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro‐ and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.  相似文献   
9.
1,4- and 1,5-disubstituted tetrazoles possess enriched structures and versatile chemistry, representing a challenge for chemists. In the present work, we unravel the fragmentation patterns of a chemically diverse range of 5-allyloxy-1-aryl-tetrazoles and 4-allyl-1-aryl-tetrazolole-5-ones when subjected to electron impact mass spectrometry (EI-MS) and investigate the correlation with the UV-induced fragmentation channels of the matrix-isolated tetrazole derivatives. Our results indicate that the fragmentation pathways of the selected tetrazoles in EI-MS are highly influenced by the electronic effects induced by substitution. Multiple pathways can be envisaged to explain the mechanisms of fragmentation, frequently awarding common final species, namely arylisocyanate, arylazide, arylnitrene, isocyanic acid and hydrogen azide radical cations, as well as allyl/aryl cations. The identified fragments are consistent with those found in previous investigations concerning the photochemical stability of the same class of molecules. This parallelism showcases a similarity in the behaviour of tetrazoles under EI-MS and UV-irradiation in the inert environment of cryogenic matrices of noble gases, providing efficient tools for reactivity predictions, whether for analytical ends or more in-depth studies. Theoretical calculations provide complementary information to articulate predictions of resulting products.  相似文献   
10.
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号