首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   10篇
  国内免费   2篇
化学   216篇
晶体学   4篇
力学   4篇
数学   18篇
物理学   76篇
  2023年   1篇
  2022年   3篇
  2021年   9篇
  2020年   8篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   10篇
  2015年   12篇
  2014年   10篇
  2013年   20篇
  2012年   18篇
  2011年   37篇
  2010年   18篇
  2009年   13篇
  2008年   13篇
  2007年   11篇
  2006年   16篇
  2005年   17篇
  2004年   6篇
  2003年   13篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   7篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1984年   4篇
  1982年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
  1969年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3-(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A−1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.  相似文献   
15.
The design and synthesis of a tweezer-shaped naphthalenediimide (NDI)–anthracene conjugate ( 2NDI ) are reported. In the structure of the closed form (πNDI ⋅⋅⋅ πNDI stack) of 2NDI , which was elucidated by single-crystal XRD, the existence of C−H ⋅⋅⋅ O hydrogen bonding involving the nearest carbonyl oxygen atom of an NDI unit was suggested. The tunability of πNDI ⋅⋅⋅ πNDI interactions was studied by means of UV/Vis absorption, fluorescence and NMR spectroscopy and molecular modelling. This revealed that the πNDI ⋅⋅⋅ πNDI interactions in 2NDI affect the absorption and emission properties depending on the temperature. Furthermore, in polar solvents, 2NDI prefers the stronger πNDI ⋅⋅⋅ πNDI stack, whereas the πNDI ⋅⋅⋅ πNDI interaction is diminished in nonpolar solvents. Importantly, the conformational variations of 2NDI can be reversibly switched by variation in temperature, and this suggests potential application for fluorogenic molecular switches upon temperature changes.  相似文献   
16.
Rotational diffusion of two organic solutes, coumarin153 (C153) and 4-aminophthalimide (AP) has been investigated in four ionic liquids (ILs), viz. 1-ethyl-3-methylimidazolium trifluoroacetate (EMIMTFA), 1-ethyl-3-methylimidazolium ethylsulfate (EMIMESU), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMTFB) and 1-ethyl-3-methylimidazolium tetracyanoborate (EMIMTCB), as a function of temperature. Between the two probes, AP can act as hydrogen-bond-donor to the solvents having hydrogen bond acceptor ability. The results indicate that the rotational dynamics of C153 is mainly governed by the viscosity of the medium. On the other hand, the rotational motion of AP is found to be significantly hindered in the ILs depending on the nature of anions of the ILs. Rotational coupling constant values for AP in the ILs follow the order TFA?>?ESU?>?TCB?>?TFB. The slower rotational motion of AP in these ILs has been attributed to the specific hydrogen bonding interaction between AP and anions of ILs.
Figure
Rotational diffusion of two organic solutes, coumarin153 (C153) and 4-aminophthalimide (AP) has been investigated in four different ionic liquids (ILs) so as to monitor the effects of anions on the rotational dynamics of the solutes exclusively. Figure showing the anisotropy decay profile of AP at 293 K in two isoviscous room temperature ionic liquids having different hydrogen bond acceptors ability  相似文献   
17.
We report here the development of hybrid quantum mechanics/molecular mechanics (QM/MM) interface between the plane‐wave density functional theory based CPMD code and the empirical force‐field based GULP code for modeling periodic solids and surfaces. The hybrid QM/MM interface is based on the electrostatic coupling between QM and MM regions. The interface is designed for carrying out full relaxation of all the QM and MM atoms during geometry optimizations and molecular dynamics simulations, including the boundary atoms. Both Born–Oppenheimer and Car–Parrinello molecular dynamics schemes are enabled for the QM part during the QM/MM calculations. This interface has the advantage of parallelization of both the programs such that the QM and MM force evaluations can be carried out in parallel to model large systems. The interface program is first validated for total energy conservation and parallel scaling performance is benchmarked. Oxygen vacancy in α‐cristobalite is then studied in detail and the results are compared with a fully QM calculation and experimental data. Subsequently, we use our implementation to investigate the structure of rhodium cluster (Rhn; n = 2 to 6) formed from Rh(C2H4)2 complex adsorbed within a cavity of Y‐zeolite in a reducible atmosphere of H2 gas. © 2016 Wiley Periodicals, Inc.  相似文献   
18.
Polymeric materials have been found to be ideal candidates for the synthesis of organic–inorganic nanomaterials. We have obtained Co3O4‐decorated graphene oxide (GO) nanocomposites by a simple polymer combustion method. Polyvinyl alcohol (PVA) of two different molecular weights, 14,000 and 125,000, was used for the synthesis. The pristine sample was annealed at 300, 500, and 800°C. PVA has played an important role in the formation of GO and Co3O4 nanoparticles. Synthesized Co3O4–GO nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared, Raman, electron paramagnetic resonance, transmission electron microscopy, and vibrating sample magnetometry. Reflection peaks at 12° and 37° in an X‐ray study confirm the formation of Co3O4–GO. Raman study validates the presence of GO in nanocomposites of Co3O4–GO. Room temperature ferromagnetism was observed in all annealed samples. The highest coercivity of 462 G was observed for 300°C annealed samples as compared with bulk Co3O4. On the basis of the results obtained, a mechanism of formation is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
19.
The synthesis and characterization of water-soluble dispersions of Ag nanoparticles by the reduction of AgNO(3) using tryptophan under alkaline synthesis conditions are reported. The Ag nanoparticle formation was very slow at low concentration and rapid at extremes. For surface modification and redox reactions, manipulating the interparticles interaction controlled the size of Ag nanoparticles aggregates. Our results suggest that the replacement of the BH(4)(-) ions adsorbed on the nanoparticle surface by tryptophan destabilizes the particles and further caused aggregation. A mechanism is proposed for the formation of silver nanoparticles by tryptophan. The experimental results are supported by theoretical calculations. The Ag nanoparticles were characterized by UV-vis absorption, dynamic light scattering and transmission electron microscopy techniques.  相似文献   
20.
Thermal techniques, differential scanning calorimetry (DSC), and hot stage microscopy (HSM) have been used to study the interactions between furosemide and caffeine that are known to form a 1:1 cocrystal. This system has been used as an example to study the probable mechanism of cocrystal formation when the individual components, which are polymorphic, are heated. The study indicates that the phase transition of the low temperature stable polymorph of furosemide initiates cocrystal formation. This result suggests increased mass transfer rate can trigger cocrystal formation. The binary phase diagram (composition–temperature plots) of furosemide–cocrystal–caffeine system was determined from the DSC curves. The results imply that the cocrystal forms eutectic with caffeine but not with furosemide. This study has thus exemplified the use of DSC in understanding binary phase system where the two components form a cocrystal.  相似文献   
[首页] « 上一页 [1] 2 [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号