首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2645篇
  免费   86篇
  国内免费   10篇
化学   1690篇
晶体学   32篇
力学   45篇
数学   297篇
物理学   677篇
  2023年   17篇
  2022年   26篇
  2021年   46篇
  2020年   46篇
  2019年   56篇
  2018年   32篇
  2017年   30篇
  2016年   94篇
  2015年   47篇
  2014年   71篇
  2013年   105篇
  2012年   142篇
  2011年   183篇
  2010年   93篇
  2009年   73篇
  2008年   143篇
  2007年   143篇
  2006年   149篇
  2005年   117篇
  2004年   110篇
  2003年   90篇
  2002年   76篇
  2001年   66篇
  2000年   38篇
  1999年   27篇
  1998年   27篇
  1997年   21篇
  1996年   56篇
  1995年   29篇
  1994年   21篇
  1993年   35篇
  1992年   38篇
  1991年   25篇
  1990年   27篇
  1989年   27篇
  1988年   25篇
  1987年   20篇
  1986年   11篇
  1985年   17篇
  1984年   19篇
  1982年   17篇
  1981年   19篇
  1980年   26篇
  1979年   17篇
  1978年   24篇
  1977年   16篇
  1976年   16篇
  1974年   24篇
  1973年   19篇
  1972年   10篇
排序方式: 共有2741条查询结果,搜索用时 15 毫秒
91.
Polyvinylamine hydrogels with silica particles encapsulated (PVAm/silica) were produced by a two‐step synthesis. In the first step, polyvinylformamide/silica (PVFA/silica) hybrids were synthesized from vinylformamide (VFA) and 1,3‐divinylimidazolidin‐2‐one (1,3‐bisvinylethyleneurea, BVU), as the crosslinker, by radical copolymerization in silica/water suspensions using different compositions of VFA/BVU. The target product PVAm/silica was obtained by acidic hydrolysis of the PVFA/silica hydrogels in a second step. The chemical structures of both hydrogels, PVFA/silica and PVAm/silica, respectively, were revealed by solid‐state 13C(1H) cross‐polarity/magic‐angle spinning NMR spectroscopy. Both hydrogels swelled significantly in water. The swelling capacity of the two systems was characterized by the correlation length ξ (or hydrodynamic blob size) of the network meshes with small‐angle neutron scattering experiments. ξ is significantly larger for PVAm/silica than for PVFA/silica, which corresponds to the observed higher swelling capacity of this polyelectrolyte material. Furthermore, the swelling behavior of the hybrid hydrogels was quantitatively described in terms of free swell capacity, centrifuge‐retention capacity, adsorption against pressure, and free swell rate as compared with values of the corresponding copolymer hydrogels. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3144–3152, 2002  相似文献   
92.
Asymmetric trans-bioreduction of activated alkenes by KYE1 from Kluyveromyces lactis and Yers-ER from Yersinia bercovieri, two ene-reductases from the Old Yellow Enzyme family, showed a broad substrate spectrum with a moderate to excellent degree of stereoselectivity. Both substrate- and enzyme-based stereocontrols were observed to furnish opposite stereoisomeric products. The effects of organic solvents on enzyme activity and stereoselectivity were outlined in this study, where two-phase systems hexane and toluene are shown to sustain bioreduction efficiency even at high organic solvent content.  相似文献   
93.
We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two Pt(II) chromophores [Pt(PEt(3))(2)(C≡C)(DTE)(C≡C)Pt(PEt(3))(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photoconversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%--considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (>400 nm), which is not absorbed by the non-metallated DTE core HC≡C(DTE)C≡CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the Pt(II) units has the potential to tune absorption properties and hence operational wavelength across the visible range.  相似文献   
94.
The radical C-glycosidation of (-)-(1S,4R,5R, 6R)-6-endo-chloro-3-methylidene-5-exo-(phenylseleno)-7-ox abi cyclo[2. 2.1]heptan-2-one ((-)-4) with 2,3,4, 6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide gave (+)-(1S,3R,4R, 5R,6R)-6-endo-chloro-5-exo-(phenylseleno)-3-endo-(1',3',4', 5'-tetra-O-acetyl-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-7-oxabi cyc lo[ 2.2.1]hept-2-one ((+)-5) that was converted into (+)-(1R,2S,5R, 6R)-5-acetamido-3-chloro-2-hydroxy-6-(1',3',4',5'-tetra-O-acetyl)-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)cyclohex -3-en- 1-yl acetate ((+)-10) and into (+)-(1R,2S,5R, 6S)-5-bromo-3-chloro-2-hydroxy-6-(1',3',4',5'-tetra-O-acetyl-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)cyclohex -3-en- 1-yl acetate ((+)-19). Ozonolysis of (+)-10 and further transformations provided 2-acetamido-2,3-dideoxy-3-C-(2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-D-galac tos e (alpha-C(1-->3)-D-mannopyranoside of N-acetylgalactosamine (alpha-D-Manp-(1-->3)CH(2)-D-GalNAc): 1). Displacement of the bromide (+)-19 with NaN(3) in DMF provided the corresponding azide ((-)-20) following a S(N)2 mechanism. Ozonolysis of (-)-20 and further transformations led to 2-acetamido-2,3-dideoxy-3-C-(2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-D-talose (alpha-C(1-->3)-D-mannopyranoside of N-acetyl D-talosamine (alpha-D-Manp-(1-->3)CH(2)-D-TalNAc): 2). The neutral C-disaccharide 1 inhibits several glycosidases (e.g., beta-galactosidase from jack bean with K(i) = 7.5 microM, alpha-L-fucosidase from human placenta with K(i) = 28 microM, beta-glucosidase from Caldocellum saccharolyticum with K(i) = 18 microM) and human alpha-1, 3-fucosyltransferase VI (Fuc-TVI) with K(i) = 120 microM whereas it 2-epimer 2 does not. Double reciprocal analysis showed that the inhibition of Fuc-TVI by 1 displays a mixed pattern with respect to both the donor sugar GDP-fucose and the acceptor LacNAc with K(i) of 123 and 128 microM, respectively.  相似文献   
95.
We have found that the presence of <1 wt% of the globular protein alpha-lactalbumin has a significant impact on the equilibrium phase behavior of dilute sodium bis(ethylhexyl) sulfosuccinate (AOT)/brine/isooctane systems. Nuclear magnetic resonance (NMR), Karl Fischer titration, and ultraviolet spectroscopy were used to determine the surfactant, oil, water, and protein content of the organic and aqueous phases as a function of the total surfactant and protein present. As a small amount of alpha-lactalbumin is added to the mixture, there is a substantial increase (up to 80%) in the maximum water solubility in the water-in-oil microemulsion phase. Dynamic light scattering measurements indicate that this increase is due to a decrease in the magnitude of the (negative) spontaneous curvature of the surfactant monolayer, as droplets swell in size. As the molar ratio of alpha-lactalbumin to AOT surpasses approximately 1:300, the partitioning of water, protein, and surfactant shifts to the excess aqueous phase, where soluble assemblies with positive curvature are detected by dynamic light scattering. Significant amounts of isooctane are solubilized in these aggregates, consistent with the formation of oil-in-water microemulsion droplets. Circular dichroism studies showed that the tertiary structure of the protein in the microemulsion is disrupted while the secondary structure is increased. In light of these findings, the protein most likely expands to a molten-globule type conformation in the AOT interfacial environment, but does not substantially unfold to become an extended chain.  相似文献   
96.
Stefan Berger 《Tetrahedron》1981,37(8):1607-1611
The pH dependence of the 13C NMR spectra of phenolphthalein has been measured and interpreted. The spectrum of the neutral compound 1 is compared with the spectra of the dianion 4, the trianion5 and the carbocation7. At the first time spectroscopic evidence for the carbinol 6 is given.  相似文献   
97.
Synthetically useful transformations arise from the thermal decomposition of aryldiazoacetates in the presence of primary and secondary amines without the use of a metal catalyst. Thermally generated, free donor/acceptor carbenes directly undergo N-H insertion with amines through selective aza-ylide formation to afford a variety of α-amino esters in 53-96% yields.  相似文献   
98.
Two ordered, soft-templated mesoporous carbon powders with cubic and hexagonal framework structure and four different commercial, low cost methacrylate-based polymer binders with widely varying physical properties are investigated as screen printed electrodes for glucose sensors using glucose oxidase and ferricyanide as the mediator. Both the chemistry and concentration of the binder in the electrode formulation can significantly impact the performance. Poly(hydroxybutyl methacrylate) as the binder provides hydrophilicity to enable transport of species in the aqueous phase to the carbon surface, but yet is sufficiently hydrophobic to provide mechanical robustness to the sensor. The current from the mesoporous carbon electrodes can be more than an order of magnitude greater than for a commercial printed carbon electrode (Zensor) with improved sensitivity for model glucose solutions. Even when applying these sensors to rabbit whole blood, the performance of these glucose sensors compares favorably to a standard commercial glucose meter with the lower detection limit of the mesoporous electrode being approximately 20 mg dL−1 despite the lack of a separation membrane to prevent non-specific events; these results suggest that the small pore sizes and high surface areas associated with ordered mesoporous carbons may effectively decrease some non-specific inferences for electrochemical sensing.  相似文献   
99.
Protein adsorption to the inner capillary wall hinders the use of kinetic capillary electrophoresis (KCE) when studying noncovalent protein-ligand interactions. Permanent and dynamic capillary coatings have been previously reported to alleviate much of the problems associated with protein adsorption. The characteristic limitations associated with permanent and dynamic coatings motivated us to look at a third type of coating - semipermanent. Here, we demonstrate that a semipermanent capillary coating, designed by Lucy and co-workers, comprised of dioctadecyldimethylammonium bromide (DODAB) and polyoxyethylene (POE) stearate, greatly reduces protein adsorption at physiological pH - a necessary requirement for KCE. The coating (i) does not inhibit protein-DNA complex formation, (ii) prevents the adsorption of the analytes, and (iii) supports an electoosmotic flow required for many applications of KCE. The coating was tested in three physiological buffers using a well-known DNA aptamer and four proteins that severely bind to bare silica capillaries as standards. For every protein, a condition was found under which the semipermanent coating effectively suppresses protein adhesion. While no coating can completely prevent the adsorption of all proteins, our findings suggest that the DODAB/POE stearate coating can have a broad impact on CE at large, as it prevents the absorption of several well studied, highly adhesive proteins at physiological pH.  相似文献   
100.
Chemically induced dimerization (CID) has proven to be a powerful tool for modulating protein interactions. However, the traditional dimerizer rapamycin has limitations in certain in vivo applications because of its slow reversibility and its affinity for endogenous proteins. Described herein is a bioorthogonal system for rapidly reversible CID. A novel dimerizer with synthetic ligand of FKBP′ (SLF′) linked to trimethoprim (TMP). The SLF′ moiety binds to the F36V mutant of FK506‐binding protein (FKBP) and the TMP moiety binds to E. coli dihydrofolate reductase (eDHFR). SLF′‐TMP‐induced heterodimerization of FKBP(F36V) and eDHFR with a dissociation constant of 0.12 μM . Addition of TMP alone was sufficient to rapidly disrupt this heterodimerization. Two examples are presented to demonstrate that this system is an invaluable tool, which can be widely used to rapidly and reversibly control protein function in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号