首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   0篇
化学   91篇
晶体学   34篇
物理学   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2014年   6篇
  2013年   6篇
  2012年   8篇
  2011年   8篇
  2010年   9篇
  2009年   13篇
  2008年   15篇
  2007年   6篇
  2006年   12篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
31.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of 106 compounds containing palladium atoms surrounded by halogen atoms. Depending on the oxidation number (2 or 4), Pd atoms can bind 4 to 6 X atoms (X = Cl, Br, I) and form PdX n coordination polyhedra shaped like octahedra or square pyramids (n = 6), square pyramids (n = 5), or squares (n = 4). A lone electron pair on Pd(II) was found on the basis of X-ray diffraction data. The influence of the palladium valence state on the key stereochemical features of palladium halide complexes is considered in terms of the 18-electron rule. The tendency of palladium atoms to Pd···H aghostic interactions was noted.  相似文献   
32.
Using the Voronoi–Dirichlet partition procedure and the method of intersecting spheres, it is demonstrated that in the crystal structures of chalcogen-containing compounds, Pt(IV) atoms form only PtX6 octahedra (X = S, Se, Te), whereas in the case of Pt(III) and Pt(II), square coordination by X atoms is typical. The Pt(II) atoms can also form PtX5 square pyramids (X = S, Se), PtS6 octahedra, and PtTe3Pt3 quasi-octahedra in which a platinum atom is located in the trans-position to each coordinated tellurium atom. It was found that Pt(II) atoms in the PtX4 squares (X = S, Se), unlike square-coordinated Pt(III) atoms, can form one or two Pt–M bonds (M is a d metal) and 1 to 4 secondary Pt–Q bonds, where Q is an s metal or hydrogen. The main features of platinum stereochemistry depending on the metal valence state and coordination number (CN) and on the nature of the chalcogen atom were quantitatively characterized in terms of the Voronoi–Dirichlet polyhedra.  相似文献   
33.
The processes going on in silver-doped GeO2 films during air-heating were investigated by XPS, TEM, IR and UV-visible spectroscopy methods. Silver was shown to interact with the GeO2 matrix at 500-600 °C to give silver germanate which was decomposed on further heating to form GeO2 and silver nanoparticles, 10-35 nm in size, absorbing in the plasmon resonance region (λmax = 415 nm). The silver nanoparticles are located deep in the films and encapsulated by oxide particles.  相似文献   
34.
Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analyses of compounds containing complexes [Rh a X n ] z (X = F, Cl, Br). It was found that, irrespective of oxidation number (+3, +4, or +5), rhodium atoms always exhibit the coordination number 6 with respect to the halogen atoms and have octahedral coordination. The influence of site symmetry and the valence state of Rh on the distortion of RhX6 octahedra are considered. The electronic configuration of the Rh atoms is shown to influence the symmetry of their valence-force field within the crystal structure.  相似文献   
35.
36.
A complex of uranyl perchlorate with imidazolidine-2-one as the molecular ligand, [UO2(Imon)4(H2O)](ClO4)2 (I), was synthesized and structurally characterized by X-ray diffraction analysis. The coordination number of the uranium atom is 7. The nearest environment of the uranyl ion includes four O atoms of the imidazolidine-2-one molecules and one O atom of the water molecule. The perchlorate anions are outer-sphere ligands. The crystals are monoclinic: space group P21/c; a = 16.294(3) Å, b = 16.135(3) Å, c = 9.987(2) Å, = 97.69 (3)°, V = 2603.0 (9) Å3, (calcd) = 2.117 g/cm3, Z = 4. The IR and luminescence spectra of the complex were recorded.Translated from Koordinatsionnaya Khimiya, Vol. 30, No. 12, 2004, pp. 919–924.Original Russian Text Copyright © 2004 by Andreev, Antipin, Budantseva, Tuchina, Serezhkina, Fedoseev, Yusov.  相似文献   
37.
38.
Single crystals of M[UO2(C2O4)(NCS)] · 0.5H2O (M = Rb (I) or Cs (II)) have been synthesized and studied by X-ray diffraction analysis. The compounds are isostructural, and their crystals are monoclinic with the space group C2/c, Z = 4, and unit cell parameters: a = 9.0624(5) Å, b = 13.1242(7) Å, c = 8.9204(5) Å, β = 98.897(2)°, R = 0.0226 (I); a = 9.3171(3) Å, b = 13.2987(5) Å, c = 9.1151(3) Å, β = 101.0860(10)°, R = 0.0214 (II). The main structural units of the crystals of I and II are the [[UO2(C2O4)(NCS)]? chains belonging to the crystal-chemical group AK02M1 (A = UO 2 2+ , K02 = C2O 4 2? , M1 = NCS? of the uranyl complexes. The uranium-containing chains are joined into a three-dimensional framework through electrostatic interactions with the outer-sphere cations and hydrogen bonds involving the water molecules.  相似文献   
39.
Compound Na[UO2(SeO3)(HSeO3)] · 4H2O (I) has been synthesized and studied by single-crystal X-ray diffraction. The crystals of I are monoclinic with the unit cell parameters a = 8.8032(5) Å, b = 10.4610(7) Å, c = 13.1312(7) Å, β = 105.054(2)°, space group P21/n, Z = 4, V = 1167.76(12) Å3, R = 0.0394. The main structural units of crystals I are the [UO2(SeO3)(HSeO3)]? layers belonging to the AT3B2 crystal-chemical group (A = UO 2 2+ , T3 = SeO 3 2? , B2 =HSeO 3 ? ) of the uranyl complexes. The sodium ions are linked with oxygen atoms of two uranyl ions of the same layer and with four water molecules. Electroneutral packets that formed are linked into a three-dimensional framework through a system of hydrogen bonds.  相似文献   
40.
Single crystals of K4[(UO2)2(C2O4)3(NCS)2] · 4H2O(I) have been synthesized and studied by X-ray diffraction. The crystals are monoclinic with the unit cell parameters a = 8.0226(7) Å, b = 14.9493(11) Å, c = 11.1670(9) Å, β = 98.299(3)°, space group P21/n, Z = 2, V = 1325.26(19) Å3, R = 0.0186. The main structural units of the crystals of structure I are discrete binuclear groups [(UO2)2(C2O4)3(NCS)2]4? belonging to the crystal-chemical group A2K02B 2 01 M 2 1 (A =UO 2 2+ , K02 =C2O 4 2? , B01 =C2O 4 2? , M1 = NCS?) of the uranyl complexes. The uranium-containing complexes are linked into a three-dimensional framework through the potassium ions and a system of hydrogen bonds involving the outer-sphere water molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号