The mechanism of transition-metal tetrahydroborate dimerization was established for the first time on the example of (Ph(3)P)(2)Cu(η(2)-BH(4)) interaction with different proton donors [MeOH, CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH, (CF(3))(3)CHOH, p-NO(2)C(6)H(4)OH, p-NO(2)C(6)H(4)N═NC(6)H(4)OH, p-NO(2)C(6)H(4)NH(2)] using the combination of experimental (IR, 190-300 K) and quantum-chemical (DFT/M06) methods. The formation of dihydrogen-bonded complexes as the first reaction step was established experimentally. Their structural, electronic, energetic, and spectroscopic features were thoroughly analyzed by means of quantum-chemical calculations. Bifurcate complexes involving both bridging and terminal hydride hydrogen atoms become thermodynamically preferred for strong proton donors. Their formation was found to be a prerequisite for the subsequent proton transfer and dimerization to occur. Reaction kinetics was studied at variable temperature, showing that proton transfer is the rate-determining step. This result is in agreement with the computed potential energy profile of (Ph(3)P)(2)Cu(η(2)-BH(4)) dimerization, yielding [{(Ph(3)P)(2)Cu}(2)(μ,η(4)-BH(4))](+). 相似文献
Differential scanning calorimetry (DSC) technique has been applied for the experimental determination of temperature and heat of phase transition of pure silicon (7 N) during heating and cooling cycles at the rate of 10 K min?1. The measurements were carried out in the temperature range of 25–1450 °C in a flow gas atmosphere (Ar, 99.9992%) using three types of crucibles made of alumina, h-BN and alumina covered with h-BN coating. The following characteristics were estimated from DSC curves: melting point of silicon—1414 °C, the heat of fusion—1826 J g?1 and the heat of solidification—1654 J g?1. It was found that the silicon evaporation phenomenon accompanying the tests had no effect on the measurements of temperature during solid-to-liquid and liquid-to-solid transformations and on the measurement of the latent heat of fusion. The effect of crucible type on the DSC measurements is discussed.
Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.
New planar-chiral hydroxycarbonyl [2.2]paracyclophane derivatives, 4-acetyl-13-bromo-5-hydroxy[2.2]paracyclophane (Br-АНРС, 63%) and 4-benzoyl-13-bromo-5-hydroxy[2.2]paracyclophane (Br-BHPC, 53%), were synthesized and reacted with the enantiomers of α-phenylethylamine to form corresponding Schiff bases, 12-bromo-4-hydroxy-5[1-(1-phenyl-ethylimino)-ethyl]-[2.2]paracyclophane and 12-bromo-4-hydroxy-5[1-(1-phenyl-ethylimino)-(phenyl)methylen-[2.2]paracyclophane. The diastereomers of the imines were resolved and their absolute configurations and consequently the corresponding configurations of the enantiomers of Br-АНРС were determined by X-ray diffraction. Enantiomerically pure Schiff bases were applied as ligands to form catalysts for the enantioselective addition reaction of diethylzinc with benzaldehyde where 1-phenylpropanol was obtained with 77–91% ee. 相似文献
Chromatographia - Nucleobases, nucleosides and nucleotides can act as chemical markers and immunnostimulants. Ultra-high-performance liquid chromatography with electrospray ionization and... 相似文献
Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus–nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0=322 GPa for δ-P3N5 and 339 GPa for PN2. Upon decompression below 7 GPa, δ-P3N5 undergoes a transformation into a novel α′-P3N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α′-P3N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure. 相似文献
Mitotane is a cytotoxic drug used in the treatment of inoperable adrenocortical carcinoma, it inhibits steroidogenesis as well, and therefore monitoring the level of steroid hormones in patients treated with mitotane is a crucial point of therapy. Hence, we have developed a simple, fast, and efficient electrophoretic method combined with reverse polarity sweeping as online preconcentration technique and dispersive liquid–liquid microextraction for the simultaneous determination of mitotane, its main metabolite DDA, and five steroid hormones (progesterone, testosterone, epitestosterone, cortisol, and corticosterone) in urine samples. In addition, a new sample matrix consisting of β-CD2SDS1 complexes for a high hydrophobic compounds solubilization was developed. Approach based on the application of β-cyclodextrin and SDS complex of a ratio 2:1 allowed for hydrodynamic injection into the capillary of a solution containing both mitotane and other analytes. The detection limits of the analytes for the reverse polarity sweeping-dispersive liquid–liquid microextraction method were found to be in the range of 1.5–3 ng/mL, which were approximately 1000 times lower than in the conventional hydrodynamic injection (5 s, 0.5 psi) without any preconcentration procedure. All analytes were completely resolved in less than 13 min by uncoated silica capillary with an inner diameter of 75 μm (ID) × 60 cm. Electrophoretic separation was performed in reverse polarity with a voltage of –25 kV with a background electrolyte (BGE) consisting of 100 mM SDS, 25% ACN, 25 mM phosphate buffer (pH 2.5), and 7 mM β-cyclodextrin. 相似文献