首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8830篇
  免费   360篇
  国内免费   127篇
化学   6614篇
晶体学   48篇
力学   441篇
综合类   3篇
数学   830篇
物理学   1381篇
  2024年   24篇
  2023年   68篇
  2022年   317篇
  2021年   414篇
  2020年   403篇
  2019年   413篇
  2018年   408篇
  2017年   389篇
  2016年   551篇
  2015年   395篇
  2014年   510篇
  2013年   952篇
  2012年   729篇
  2011年   664篇
  2010年   414篇
  2009年   403篇
  2008年   407篇
  2007年   345篇
  2006年   262篇
  2005年   220篇
  2004年   161篇
  2003年   155篇
  2002年   125篇
  2001年   49篇
  2000年   32篇
  1999年   39篇
  1998年   28篇
  1997年   32篇
  1996年   29篇
  1995年   15篇
  1994年   22篇
  1993年   21篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   14篇
  1988年   12篇
  1987年   21篇
  1986年   17篇
  1985年   23篇
  1984年   23篇
  1983年   9篇
  1982年   28篇
  1981年   16篇
  1980年   21篇
  1979年   12篇
  1978年   12篇
  1977年   14篇
  1976年   11篇
  1975年   5篇
排序方式: 共有9317条查询结果,搜索用时 15 毫秒
71.
The increase in β-lactam-resistant Gram-negative bacteria is a severe recurrent problem in the food industry for both producers and consumers. The development of nanotechnology and nanomaterial applications has transformed many features in food science. The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) and their mechanism of action on β-lactam-resistant Gram-negative food pathogens, such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Klebsiella pneumoniae, and Proteus mirabilis, are investigated in the present paper. The study results demonstrate that ZnO NPs possesses broad-spectrum action against these β-lactamase-producing strains. The minimal inhibitory and minimal bactericidal concentrations vary from 0.04 to 0.08 and 0.12 to 0.24 mg/mL, respectively. The ZnO NPs elevate the level of reactive oxygen species (ROS) and malondialdehyde in the bacterial cells as membrane lipid peroxidation. It has been confirmed from the transmission electron microscopy image of the treated bacterial cells that ZnO NPs diminish the permeable membrane, denature the intracellular proteins, cause DNA damage, and cause membrane leakage. Based on these findings, the action of ZnO NPs has been attributed to the fact that broad-spectrum antibacterial action against β-lactam-resistant Gram-negative food pathogens is mediated by Zn2+ ion-induced oxidative stress, actions via lipid peroxidation and membrane damage, subsequently resulting in depletion, leading to β-lactamase enzyme inhibition, intracellular protein inactivation, DNA damage, and eventually cell death. Based on the findings of the present study, ZnO NPs can be recommended as potent broad-spectrum antibacterial agents against β-lactam-resistant Gram-negative pathogenic strains.  相似文献   
72.
In the present study, a new and versatile liquid-phase microextraction method is described. This method requires very simple and cheap apparatus and also a small amount of organic solvent. Eight microliters of 1-undecanol was delivered to the surface of solution containing analytes and solution was stirred for a desired time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified 1-undecanol was transferred into a suitable vial and immediately melted; then, 2 μL of it was injected into a gas chromatograph for analysis.Some polycyclic aromatic hydrocarbons (PAHs) were used as model compounds for developing and evaluating of the method performance. Analysis was carried out by gas chromatography/flame ionization detection (GC/FID).Several factors influencing the microextraction efficiency, such as the nature and volume of organic solvent, the temperature and volume of sample solution, stirring rate and extraction time were investigated and optimized. The applicability of the technique was evaluated by determination of trace amounts of PAHs in environmental samples. Under the optimized conditions, the detection limits (LOD) of the method were in the range of 0.07-1.67 μg L−1 and relative standard deviations (R.S.D.) for 10 μg L−1 PAHs were <7%. A good linearity (r2 > 0.995) in a calibration range of 0.25-300.00 μg L−1 was obtained. After 30 min extraction duration, enrichment factors were in the range of 594-1940. Finally, the proposed method was applied to the determination of trace amounts of PAHs in several real water samples, and satisfactory results were resulted. Since very simple devices were used, this new technique is affordable, efficient, and convenient for extraction and determination of low concentrations of PAHs in water samples.  相似文献   
73.
In this study, swelling behavior and mechanical properties of polyelectrolyte cationic hydrogels of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA), and poly((2-dimethylamino) ethyl methacrylate-co-butyl methacrylate) (P(DMAEMA-co-BMA)), were investigated. Hydrogels were prepared by free-radical solution copolymerization of DMAEMA and BMA using ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent. Compression-strain measurements were used to analyze the mechanical properties of the hydrogels. It was found that increasing the amount of BMA comonomer in the gel structure increases the compression modulus of the material. The results of mechanical measurements were used to characterize the network structure of the hydrogels, namely the effective crosslinking density (. It was found that exceeds the theoretical crosslinking density (νt) calculated from the initial amount of EGDMA used for hydrogel synthesis. These hydrogels demonstrated dual sensitivity to both pH and temperature. It was shown that the pH-sensitive or temperature-sensitive phase transition behavior of the gels can be changed by changing the temperature or pH of the swelling medium at constant hydrogel composition. Increasing the temperature decreased the transition pH of the pH-sensitive phase transition. On the other hand, increasing the pH of the surrounding medium decreased the transition temperature of the temperature-sensitive phase transition. Incorporation of BMA in the gel structure has a significant effect on the transition point of the gel. Increasing the BMA content reduced the transition pH and temperature of the pH- and temperature-sensitive phase transition, respectively. The similar effect of increasing temperature or BMA content can be explained by the role of hydrophobicity in the phase transition behavior of hydrogels. Finally, the results of equilibrium swelling and compression-strain measurements were used to calculate the polymer-solvent interaction parameters of these hydrogels using the Flory-Rehner equation of equilibrium swelling.  相似文献   
74.
75.
 A sensitive and fairly selective quenchofluorimetric method for the determination of mercury ultra-trace with murexide (ammonium purpurate) has been developed. The method is based on the instantaneous quenching action of the metal-ion upon the native fluorescence of murexide [λex(max) = 360 nm; λem(max) = 445 nm] in the optimum pH range of 5.8 to 6.6 at room temperature (25±0.5) °C. The fluorescence quenching is collinear in the range of 5 μg/L to 100 μg/L mercury. The developed method is very precise and accurate (RSD = 2.2% for 11 determination of 50 μg/L Hg(II). Large excesses of more than 50 cations, anions and complexing agents were found to have no interference. The developed method was successfully tested over synthetic mixtures of various compositions, certified reference materials and factory effluents. Received November 16, 1999. Revision March 30, 2001.  相似文献   
76.
In this study, graphene nanosheets (GNSs) were adopted as an adsorbent to investigate their characterizations and performance for adsorbing benzene and toluene in aqueous solutions. In order to determine the best fit model for each considered system, nonlinear regressions were used. Experimental data of adsorption were corroborated by the combined Langmuir–Freundlich (Sips) models for the isotherms and pseudo‐first‐order model for the kinetics. As a result, GNSs displayed high affinity to the aromatic hydrocarbons such as benzene and toluene. The high affinity was dominated by π–π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS's surfaces. Hydrophobic properties and molecular sizes of benzene and toluene affected the adsorption of GNS. In addition, the favorable adsorption of toluene possibly was due to the increase in the molecular weight, decrease in the solubility, and the increase in the boiling point. A comparative study on the benzene and toluene adsorption revealed that favorable adsorption of GNSs compared with that of carbon nanotubes was consistent with the order of physical properties such as specific surface area and pore's volume. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
77.
Organic perovskite has potential to replace organic dye as light absorber in solar cell since it possesses better optical absorption in visible region than organic dye. This work is concerned with the investigation of the influence of CH3NH3PbI3 perovskite dipping time on the performance of perovskite-sensitized solar cell (PSSC). The effect of the dipping time on the morphology and photoluminescence of the sample has also been investigated. It was found that the device achieved a power conversion efficiency (PCE) as high as 5.57 ± 0.4% at the optimum dipping time of 4 h. The highest PCE is due to the highest IPCE, lowest Rct and the longest carrier lifetime (τ).  相似文献   
78.
In recent decades, there has been an increasing trend toward the technical development of efficient energy system assessment tools owing to the growing energy demand and subsequent greenhouse gas emissions. Accordingly, in this paper, a comprehensive emergy-based exergoeconomic (emergoeconomic) method has been developed to study the biomass combustion waste heat recovery organic Rankine cycle (BCWHR-ORC), taking into account thermodynamics, economics, and sustainability aspects. To this end, the system was formulated in Engineering Equation Solver (EES) software, and then the exergy, exergoeconomic, and emergoeconomic analyses were conducted accordingly. The exergy analysis results revealed that the evaporator unit with 55.05 kilowatts and the turbine with 89.57% had the highest exergy destruction rate and exergy efficiency, respectively. Based on the exergoeconomic analysis, the cost per exergy unit (c), and the cost rate (C˙) of the output power of the system were calculated to be 24.13 USD/GJ and 14.19 USD/h, respectively. Next, by applying the emergoeconomic approach, the monetary emergy content of the system components and the flows were calculated to evaluate the system’s sustainability. Accordingly, the turbine was found to have the highest monetary emergy rate of capital investment, equal to 5.43×1012 sej/h, and an output power monetary emergy of 4.77×104 sej/J. Finally, a sensitivity analysis was performed to investigate the system’s overall performance characteristics from an exergoeconomic perspective, regarding the changes in the transformation coefficients (specific monetary emergy).  相似文献   
79.
The challenge of calculating nonequilibrium entropy in polymeric liquids undergoing flow was addressed from the perspective of extending equilibrium thermodynamics to include internal variables that quantify the internal microstructure of chain-like macromolecules and then applying these principles to nonequilibrium conditions under the presumption of an evolution of quasie equilibrium states in which the requisite internal variables relax on different time scales. The nonequilibrium entropy can be determined at various levels of coarse-graining of the polymer chains by statistical expressions involving nonequilibrium distribution functions that depend on the type of flow and the flow strength. Using nonequilibrium molecular dynamics simulations of a linear, monodisperse, entangled C1000H2002 polyethylene melt, nonequilibrium entropy was calculated directly from the nonequilibrium distribution functions, as well as from their second moments, and also using the radial distribution function at various levels of coarse-graining of the constituent macromolecular chains. Surprisingly, all these different methods of calculating the nonequilibrium entropy provide consistent values under both planar Couette and planar elongational flows. Combining the nonequilibrium entropy with the internal energy allows determination of the Helmholtz free energy, which is used as a generating function of flow dynamics in nonequilibrium thermodynamic theory.  相似文献   
80.
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号