首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   2篇
化学   62篇
晶体学   9篇
力学   13篇
数学   21篇
物理学   47篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   7篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1967年   1篇
  1966年   1篇
  1931年   2篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
21.
Summary A series of manganese(II) spin-free complexes of the type: MnLn Cl2 [L =N-Methylimidazole (MeIm), n = 1,2,3,6; L =N-ethylimidazole (EtIm), n = 4], MnLnBr2 (L = MeIm, n = 2, 4, 6; L = EtIm, n = 4, 6), MnLnI2 (L = MeIm, n = 4, 6; L = EtIm, n = 6), MnLn(NCS)2 (L = MeIm, n = 3, 4; L = EtIm, n = 4), MnL6X2 (L = MeIm, EtIm; X = NO3, ClO4, BF4); (Me4N)(MnLCl3)(L = MeIm, EtIm); (Et4N)[Mn(MeIm)Br3] and Mn(MeIm)2(N3)2 · 5 H2O were prepared and characterized. The complexes have either octahedral, distorted octahedral, polymeric octahedral or tetrahedral structures.  相似文献   
22.
23.
High-voltage alkali metal-ion batteries (AMIBs) require a non-hazardous, low-cost, and highly stable electrolyte with a large operating potential and rapid ion conductivity. Here, we have reported a halogen-free high-voltage electrolyte based on SiB11(BO)12. Because of the weak π-orbital interaction of −BO as well as the mixed covalent and ionic interaction between SiB11-cage and −BO ligand, SiB11(BO)12 has colossal stability. SiB11(BO)12 possesses extremely high vertical detachment energy (9.95 eV), anodic voltage limit (∼10.05 V), and electrochemical stability window (∼9.95 V). Furthermore, SiB11(BO)12 is thermodynamically stable at high temperatures, and its large size allows for faster cation movement. The alkali salts MSiB11(BO)12 (M=Li, Na, and K) are easily dissociated into ionic components. Electrolytes based on SiB11(BO)12 greatly outperform commercial electrolytes. In short, SiB11(BO)12-based compound is demonstrated to be a high-voltage electrolyte for AMIBs.  相似文献   
24.
The present study reports simultaneous mineralisation and biodetoxification of Ponceau S (3-hydroxy-4-(2-sulfo-4-[4-sulfophenylazo]phenylazo)-2,7-naphthalenedisulfonic acid sodium salt), an azo dye, by UV light assisted oxidation with hydroxyl and sulfate radicals. Metal ion catalysts used in the work were: Fe2+ and Ag+, and the oxidants used were: hydrogen peroxide and S2O82?. Strategies adopted to make the processes environmentally benign and economically viable by achieving maximum mineralisation in the shortest possible time are described. Mineralisation efficiency (Em) of various systems was found to follow the order: Em(Fe2+/H2O2/UV) > Em(Fe2+/S2O82?/UV) > Em(Ag+/H2O2/UV) ≈ Em(Ag+/S2O82?/UV). Thus, Fe2+ and HP are the most suitable metal ion catalyst and oxidant respectively, showing higher efficiency at pH 3 followed by that at pH 6.6. It is possible to enhance the Fe2+/H2O2/UV process electrical energy efficiency by maintaining the concentration of Fe at either 0.05 mM or 0.03 mM and that of the oxidant at 2.5 mM. The bioassay study revealed that the Fe2+/S2O82?/UV process biodetoxification efficiency is higher at pH 3 (93.7 %) followed by that at pH 6.6 (80.1 %) at the concentration of Fe 2+ and S2O82? of 0.03 mM and 2.5 mM, respectively. Thus, not only the concentration of Fe2+, but also the nature of the oxidant and pH play an important role in the biodetoxification process and S2O82? possesses higher biodetoxification efficiency than H2O2.  相似文献   
25.
The application of near infrared spectroscopy in bioprocessing has been limited by its dependence on calibrations derived from single bioreactor at a given time. Here, we propose a multiplexed calibration technique which allows calibrations to be built from multiple bioreactors run in parallel. This gives the flexibility to monitor multiple vessels and facilitates calibration model transfer between bioreactors. Models have been developed for the two key analytes: glucose and lactate using Chinese hamster ovary (CHO) cell lines and using analyte specific information obtained from the feasibility studies. We observe slight model degradation for the multiplexed models in comparison to the conventional (single probe) models, decrease in r2 values from 89.4% to 88% for glucose whereas for lactate from 92% to 91.8% and a simultaneous increase in the number of factors as the model incorporates the inter-probe variability, nevertheless the models were fit for purpose. The results of this particular application of implementing multiplexed-NIRS to monitor multiple bioreactor vessels are very encouraging, as successful models have been built on-line and validated externally, which proffers the prospect of reducing timelines in monitoring the vessels considerably, and in turn, providing improved control.  相似文献   
26.
27.
A formalism is developed to obtain the energy eigenvalues of spatially confined quantum mechanical systems in the framework of the usual Wentzel–Kramers–Brillouin (WKB) and modified airy function (MAF) methods. To illustrate the working rule, the techniques are applied to three different cases, viz. the confined one‐dimensional harmonic and quartic oscillators and a boxed‐in charged particle subject to an external electric field. The energies thus obtained are compared with those from shifted 1/N expansion, variational, and other methods, as well as the available exact numerical results. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 497–504, 1999  相似文献   
28.
Direct Metal Laser Sintering (DMLS) is one of the leading additive manufacturing processes, which produces complex metallic parts directly from the powder. One of the major problems of this rapid manufacturing process is an inhomogeneous temperature distribution, which leads to residual stress in the build part. Thus, temperature analyses must be performed, to better understand the temperature distribution and sintering behavior of the powder bed with a different laser recipe. In this study, a comprehensive three-dimensional numerical model was developed to understand the temperature distribution during direct metal laser sintering of AlSi10Mg alloy powder. The computer simulation was carried out in ANSYS 17.0 platform. Further, the effect of process parameters such as laser power and scan speed on the temperature distribution and sintering behavior were studied. From the simulation results, it was found that, when the laser power increased from 70 W to 190 W, the maximum temperature of the molten pool increased from 731?°C to 2672?°C, and the molten pool length changed from 0.286 mm to 2.167 mm. A reverse phenomenon was observed with an increase in scan speed. The sintering depth of the powder layer increases significantly from 0.061 mm to 0.872 mm with increasing the applied laser power, but decreased from 0.973 mm to 0.209 mm as a higher scan speed was applied. The developed model helps to optimize the powder layer thickness and minimize the wastage of excess powders during the sintering process.  相似文献   
29.
30.
The finite-temperature 4 theory of static Robertson-Walker (RW) space-time is extended to a case with background charge. In contrast to earlier work on static RW space-time, the curvature term is retained and its effect on the effective potential and phase transition are explicitly calculated. The spontaneous symmetry breaking aspects and its dependence on various factors are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号