首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   40篇
  国内免费   7篇
化学   853篇
晶体学   15篇
力学   13篇
数学   101篇
物理学   274篇
  2023年   6篇
  2022年   8篇
  2021年   9篇
  2020年   24篇
  2019年   31篇
  2018年   35篇
  2017年   12篇
  2016年   29篇
  2015年   30篇
  2014年   36篇
  2013年   58篇
  2012年   52篇
  2011年   93篇
  2010年   52篇
  2009年   32篇
  2008年   83篇
  2007年   66篇
  2006年   71篇
  2005年   54篇
  2004年   48篇
  2003年   36篇
  2002年   46篇
  2001年   30篇
  2000年   17篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1996年   7篇
  1995年   11篇
  1994年   18篇
  1993年   14篇
  1992年   14篇
  1991年   13篇
  1990年   13篇
  1989年   11篇
  1988年   7篇
  1987年   9篇
  1986年   19篇
  1985年   17篇
  1984年   13篇
  1983年   8篇
  1982年   10篇
  1981年   12篇
  1980年   11篇
  1979年   6篇
  1978年   7篇
  1977年   12篇
  1976年   8篇
  1974年   6篇
  1973年   8篇
排序方式: 共有1256条查询结果,搜索用时 0 毫秒
101.
The solid‐phase combinatorial synthesis of cyclodepsipeptide destruxin E has been demonstrated. The combinatorial synthesis of cyclization precursors 8 was achieved by using a split and pool method on SynPhase Lanterns. The products were successfully macrolactonized in parallel in the solution phase by using 2‐methyl‐6‐nitrobenzoic anhydride and 4‐(dimethylamino)pyridine N‐oxide to afford macrolactones 9 , and the subsequent formation of an epoxide in the side chain gave 18 member destruxin E analogues 6 . Biological evaluation of analogues 6 indicated that the N‐MeAla residue was crucial to the induction of morphological changes in osteoclast‐like multinuclear cells (OCLs). Based on structure–activity relationships, azido‐containing analogues 15 were then designed for use as a molecular probe. The synthesis and biological evaluation of analogues 15 revealed that 15 b , in which the Ile residue was replaced with a Lys(N3) residue, induced morphological changes in OCLs at a sufficient concentration, and modification around the Ile residue would be tolerated for attachment of a chemical tag toward the target identification of destruxin E ( 1 ).  相似文献   
102.
To elucidate the factors determining the spectral shapes and widths of the absorption and fluorescence spectra for keto and enol oxyluciferin and their conjugate bases in aqueous solutions, the intensities of vibronic transitions between their ground and first electronic excited states were calculated for the first time via estimation of the vibrational Franck–Condon factors. The major normal modes, overtones and combination tones in absorption and fluorescence spectra are similar for all species. The theoretical full widths at half maximum of absorption spectra are 0.4–0.7 eV and those for the fluorescence spectra are 0.4–0.5 eV, except for phenolate‐keto that exhibits exceptionally sharp peak widths due to the dominance of the 0–0′ or 0′–0 band. These spectral shapes and widths explain many relevant features of the experimentally observed spectra.  相似文献   
103.
The liquid structure of 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) has been studied by means of large-angle X-ray scattering (LAXS), (1)H, (13)C, and (19)F NMR, and molecular dynamics (MD) simulations. LAXS measurements show that the ionic liquid is highly structured with intermolecular interactions at around 6, 9, and 15 A. The intermolecular interactions at around 6, 9, and 15 A are ascribed, on the basis of the MD simulation, to the nearest neighbor EMI(+)...TFSI(-) interaction, the EMI(+)...EMI(+) and TFSI(-)...TFSI(-) interactions, and the second neighbor EMI+...TFSI(-) interaction, respectively. The ionic liquid involves two conformers, C(1) (cis) and C(2) (trans), for TFSI(-), and two conformers, planar cis and nonplanar staggered, for EMI(+), and thus the system involves four types of the EMI(+)...TFSI(-) interactions in the liquid state by taking into account the conformers. However, the EMI(+)...TFSI(-) interaction is not largely different for all combinations of the conformers. The same applies alsoto the EMI(+)...EMI(+) and TFSI(-)...TFSI(-) interactions. It is suggested from the 13C NMR that the imidazolium C(2) proton of EMI(+) strongly interacts with the O atom of the -SO(2)(CF(3)) group of TFSI(-). The interaction is not ascribed to hydrogen-bonding, according to the MD simulation. It is shown that the liquid structure is significantly different from the layered crystal structure that involves only the nonplanar staggered EMI(+) and C(1) TFSI(-) conformers.  相似文献   
104.
The Suzuki coupling polymerization between bis(carbazole) monomer ( CzDB ) and 9,9‐dihexylfluorene‐2,7‐diboronic acid was carried out to obtain PFCz‐PEDA0 having the number‐averaged molecular weight of 7000. The absorption and emission maximum wavelengths were observed at 344 and 408 nm, respectively. The quantum yield (QY) was relatively low (0.12) because of the photo‐induced electron transfer. Subsequently, CzPEDA ‐bearing 2,5‐bis(phenylethenyl)‐4‐decyloxyanisole (PEDA) segment sandwiched with 3‐bromocarbazole units was copolymerized to give PFCz‐PEDAn (n = 05, 10, 20, 35, and 50). The content of PEDA segment in polymer could be controlled by the monomer feed ratio. In CHCl3 solution, the absorbance at around 400 nm became larger with one isosbestic point at 370 nm, and the emission peak at 448 nm became prominent with increasing the PEDA content. The QY of polymer was increased as the PEDA content, which was a consequence of the fluorescence resonance energy transfer from carbazole‐containing chromophore (energy donor) to PEDA fluorophore (energy acceptor). In spin‐coated film, the maximum QY was obtained in PFCz‐PEDA05 having the most appropriate molar balance of energy donor and acceptor units. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8141–8148, 2008  相似文献   
105.
“End of Moore’s Law” has recently become a topic. Keeping the signal-to-noise ratio (SNR) at the same level in the future will surely increase the energy density of smaller-sized transistors. Lowering the operating voltage will prevent this, but the SNR would inevitably degrade. Meanwhile, biological systems such as cells and brains possess robustness against noise in their information processing in spite of the strong influence of stochastic thermal noise. Inspired by the information processing of organisms, we propose a stochastic computing model to acquire information from noisy signals. Our model is based on vector matching, in which the similarities between the input vector carrying external noisy signals and the reference vectors prepared in advance as memorized templates are evaluated in a stochastic manner. This model exhibited robustness against the noise strength and its performance was improved by addition of noise with an appropriate strength, which is similar to a phenomenon observed in stochastic resonance. Because the stochastic vector matching we propose here has robustness against noise, it is a candidate for noisy information processing that is driven by stochastically-operating devices with low energy consumption in future. Moreover, the stochastic vector matching may be applied to memory-based information processing like that of the brain.  相似文献   
106.
The synthesis and optical properties of polymers bearing the repeating unit of terfluorene and various organosilicon groups were investigated. Polymers with high molecular weight and good solubility could be obtained by Suzuki coupling polymerization from silylene‐containing fluorene‐based dibromo monomers and 9,9‐dihexylfluorene‐2,7‐bis(trimethyleneborate). From UV spectra of polymers bearing acyclic silylene bridge, the organosilicon units not only interrupted a π‐conjugation but also contributed to an electronic communication between connected fluorenes. The emission maximum wavelengths (ca. 400 nm) blue‐shifted when compared with that of polyfluorene (418 nm) and the fluorescence quantum yields were considerably high (>0.82) in the CHCl3 solution. On the other hand, rather broad emission was observed at 480 nm and the fluorescence quantum yield was quite low (0.004) in the solution‐state PL spectrum of tetraphenylsilole‐containing polymer. The polymer emitted visible green light in the spin‐coated film. The fluorescence peak intensity at 486 nm gradually decreased when the film was illuminated with the UV light of 359 nm in air. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4786–4794, 2007  相似文献   
107.
108.
Conformations of two dodecameric porphyrin wheels adsorbed on a Cu(1 0 0) were probed by using scanning tunneling microscopy (STM). Whereas a wheel consisting of six meso-meso linked diporphyrins was detected as uniform ring structure, several different images with three discrete molecular heights were detected for a wheel consisting of six meso-meso, β-β,β-β triply-linked planar diporphyrins. These results indicate that the former has a conformation similar to that in a free space, while the latter has various conformations with respect to orientation of planar diporphyrin units toward the metal surface. Several discrete STM images of the latter have been interpreted in terms of possible eight conformations, which vary as to relative orientation of neighboring diporphyrin units.  相似文献   
109.
110.
The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes’ law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号