首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22697篇
  免费   3691篇
  国内免费   3152篇
化学   17076篇
晶体学   259篇
力学   1345篇
综合类   198篇
数学   2793篇
物理学   7869篇
  2024年   55篇
  2023年   361篇
  2022年   725篇
  2021年   725篇
  2020年   785篇
  2019年   838篇
  2018年   737篇
  2017年   714篇
  2016年   992篇
  2015年   1144篇
  2014年   1329篇
  2013年   1719篇
  2012年   2007篇
  2011年   2010篇
  2010年   1446篇
  2009年   1415篇
  2008年   1586篇
  2007年   1428篇
  2006年   1275篇
  2005年   1141篇
  2004年   935篇
  2003年   726篇
  2002年   751篇
  2001年   638篇
  2000年   503篇
  1999年   457篇
  1998年   419篇
  1997年   317篇
  1996年   312篇
  1995年   286篇
  1994年   260篇
  1993年   214篇
  1992年   179篇
  1991年   189篇
  1990年   189篇
  1989年   134篇
  1988年   125篇
  1987年   94篇
  1986年   77篇
  1985年   76篇
  1984年   34篇
  1983年   39篇
  1982年   29篇
  1981年   23篇
  1980年   15篇
  1979年   11篇
  1978年   9篇
  1977年   13篇
  1973年   9篇
  1936年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.  相似文献   
992.
The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+-conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm−2, presenting a record-high cumulative capacity up to 45 Ah cm−2. The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.  相似文献   
993.
The CRISPR/Cas system is one of the most powerful tools for gene editing. However, approaches for precise control of genome editing and regulatory events are still desirable. Here, we report the spatiotemporal and efficient control of CRISPR/Cas9- and Cas12a-mediated editing with conformationally restricted guide RNAs (gRNAs). This approach relied on only two or three pre-installed photo-labile substituents followed by an intramolecular cyclization, representing a robust synthetic method in comparison to the heavily modified linear gRNAs that often require extensive screening and time-consuming optimization. This tactic could direct the precise cleavage of the genes encoding green fluorescent protein (GFP) and the vascular endothelial growth factor A (VEGFA) protein within a predefined cutting region without notable editing leakage in live cells. We also achieved light-mediated myostatin (MSTN) gene editing in embryos, wherein a new bow-knot-type gRNA was constructed with excellent OFF/ON switch efficiency. Overall, our work provides a significant new strategy in CRISPR/Cas editing with modified circular gRNAs to precisely manipulate where and when genes are edited.  相似文献   
994.
Non-metallic materials have emerged as a new family of active substrates for surface-enhanced Raman scattering (SERS), with unique advantages over their metal counterparts. However, owing to their inefficient interaction with the incident wavelength, the Raman enhancement achieved with non-metallic materials is considerably lower with respect to the metallic ones. Herein, we propose colourful semiconductor-based SERS substrates for the first time by utilizing a Fabry-Pérot cavity, which realize a large freedom in manipulating light. Owing to the delicate adjustment of the absorption in terms of both frequency and intensity, resonant absorption can be achieved with a variety of non-metal SERS substrates, with the sensitivity further enhanced by ≈100 times. As a typical example, by introducing a Fabry-Pérot-type substrate fabricated with SiO2/Si, a rather low detection limit of 10−16 M for the SARS-CoV-2S protein is achieved on SnS2. This study provides a realistic strategy for increasing SERS sensitivity when semiconductors are employed as SERS substrates.  相似文献   
995.
Zheng  Ming  Gao  Bing  Tang  Suwen  Zhu  Min  Tang  Liang  Wu  Minghong 《Catalysis Surveys from Asia》2022,26(3):174-182

Zinc molybdate (ZnMoO4), a layer perovskite material, has the advantages of high stability, excellent optical and charge properties. However, its high band gap and high electron–hole recombination efficiency limit its application in the photocatalytic reduction field like hydrogen production. In this study, we used CdS as a co-catalyst and successfully prepared CdS/ZnMoO4 composite photocatalysts with different loadings. The hydrogen evolution rate of CdS/ZnMoO4 reached 530.2 µmol h?1 g?1, which was approximately 11 and 100 times more than rates of pure CdS and ZnMoO4 under the same conditions, respectively. It is the presence of CdS that contributed to this improved performance, which acted as an electron acceptor to separate electrons and holes. Besides, a reasonable mechanism was provided based on photoelectrochemical characterizations. CdS loading greatly improved the hydrogen evolution performance of ZnMoO4 under visible light, providing a direction to improving the performance of perovskite based photocatalysts.

  相似文献   
996.
An ultrasensitive electrochemical biosensor was fabricated for electroanalytical determination of ascorbic acid(AA), dopamine(DA) and uric acid(UA) individually and simultaneously based on polypyrrole hollow nanotubes loaded with Au and Fe3O4 nanoparticles(NPs) uniformly(PPy@Au-Fe3O4). The PPy@Au-Fe3O4 nanotubes were synthesized in one-pot using MoO3 nanorods as templates and the polymerization of Py, the formation of Au and Fe3O4 NPs and the removel of MoO3 templates took place stimultaneously. Electrochemical studies reveal that PPy@Au-Fe3O4modified glassy carbon electrode(GCE) possesses excellent electro-catalytic activities toward the oxidation of AA, DA and UA. Their oxidation peak currents increase linearly in the concentration ranges of 1-2000 μmol/L for AA, 0.01-25 and 25-300 μmol/L for DA and 0.1-300 μmol/L for UA. Their detection limit values(S/N=3) were calculated as 0.45, 0.0049, and 0.051 μmol/L for AA, DA and UA in the individual detection. By changing the concentrations simultaneously, the calibration curves showed linearity to 1000, 200, and 200 μmol/L with detection limit of 0.39, 0.0060, and 0.060 μmol/L for AA, DA, and UA, respectively. Finally, the obtained biosensor was successfully applied to the detection of AA, DA, and UA with satisfactory results on actual samples.  相似文献   
997.
Amlexanox, an anti-inflammatory and anti-allergic agent, has been widely used clinically for the treatment of canker sores, asthma, and allergic rhinitis. Recently, amlexanox has received considerable attention in curing nonalcoholic fatty liver diseases and hepatitis virus infection. Herein, we first established a sensitive high-performance liquid chromatography-tandem mass spectrum (LC–MS/MS) method for the determination of amlexanox in rat plasma. Propranolol was used as the internal standard (IS). Using a simple protein precipitation method, the amlexanox and IS were separated with Capcell Pak C18 column (2.0 × 50 mm, 5 μm) and eluted with water and acetonitrile each containing 0.1% formic acid using gradient elution condition at a flow rate of 0.4 mL·min−1. Amlexanox and IS were detected by a triple quadrupole mass in multiple reactive monitoring (MRM) under the transitions of m/z 299.2 → 281.2 and m/z 259.9 → 116.1 with positive electrospray ionization, respectively. The calibration curves of amlexanox were established with the range of 50 to 2000 ng·mL−1 (r2 > 0.99). The validation method consisted of selectivity, accuracy, precision, carryover effect, matrix effect, recovery, dilution effect, and stability. The fully validated method was successfully applied to the pharmacokinetic study of amlexanox in Wistar rats.  相似文献   
998.
At present, the reactivity of cyclic alkanes is estimated by comparison with acyclic hydrocarbons. Due to the difference in the structure of cycloalkanes and acycloalkanes, the thermodynamic data obtained by analogy are not applicable. In this study, a molecular beam sampling vacuum ultraviolet photoionization time-of-flight mass spectrometer (MB-VUV-PI-TOFMS) was applied to study the low-temperature oxidation of cyclopentane (CPT) at a total pressure range from 1–3 atm and low-temperature range between 500 and 800 K. Low-temperature reaction products including cyclic olefins, cyclic ethers, and highly oxygenated intermediates (e. g., ketohydroperoxide KHP, keto-dihydroperoxide KDHP, olefinic hydroperoxides OHP and ketone structure products) were observed. Further investigation of the oxidation of CPT – electronic structure calculations – were carried out at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+ G(d,p) level to explore the reactivity of O2 molecules adding sequentially to cyclopentyl radicals. Experimental and theoretical observations showed that the dominant product channel in the reaction of CPT radicals with O2 is HO2 elimination yielding cyclopentene. The pathways of second and third O2 addition – the dissociation of hydroperoxide – were further confirmed. The results of this study will develop the low-temperature oxidation mechanism of CPT, which can be used for future research on accurately simulating the combustion process of CPT.  相似文献   
999.
Catalysts with metal-Nx sites have long been considered as effective electrocatalysts for oxygen reduction reaction (ORR), yet the accurate structure-property correlations of these active sites remain debatable. Report here is a proof-of-concept method to construct 1,4,8,11-tetraaza[14]annulene (TAA)-based polymer nanocomposites with well-managed electronic microenvironment via electron-donors/acceptors interaction of altering electron-withdrawing β-site substituents. DFT calculation proves the optimal −Cl substituted catalyst (CoTAA−Cl@GR) tailored the key OH* intermediate interaction with Co−N4 sites under the d-orbital regulation, hence reaching the top of ORR performance with excellent turnover frequency (0.49 e s−1 site−1). The combination of in situ scanning electrochemical microscopy and variable-frequency square wave voltammetry techniques contribute the great ORR kinetics of CoTAA−Cl@GR to the relatively high accessible site density (7.71×1019 site g−1) and fast electron outbound propagation mechanism. This work provides theoretical guidance for rational design of high-performance catalysts for ORR and beyond.  相似文献   
1000.
Robinia pseudoacacia flowers have attracted much attention because of numerous bioactivities. In this study, its extract showed the potential scavenging ability for 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 1,1-diphenyl-2-picrylhydrazyl free radicals. Under the guidance of antioxidant activity, the antioxidant extract was enriched by liquid-liquid extraction. The partition coefficients of the two main components in antioxidant extracts differed greatly, so in this study, elution-extrusion counter-current chromatography with the solvent system of n-hexane-ethyl acetate-methanol-water (2.5:5:2.5:5, v/v) was used to enhance the separation efficiency, and the two main components were successfully obtained. Among them, kaempferol showed strong antioxidant activity, which can be responsible for the activity of the extract. In order to deeply understand the antioxidant mechanism of kaempferol, the thermodynamics, frontier molecular orbital, and kinetics of scavenging free radicals were investigated by density functional theory. The results showed that 4′-OH in kaempferol was the most active group, which can scavenge free radicals by hydrogen atom transfer in non-polar solvents and activate 3-OH to generate double hydrogen atom transfer in the gas phase. But in polar solvents, it was more inclined to clear radicals through single electron transfer and proton transfer. The kinetic result showed that kaempferol needed 9.17 kcal/mol of activation energy to scavenge free radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号