首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   27篇
  国内免费   8篇
化学   1104篇
晶体学   23篇
力学   20篇
数学   94篇
物理学   238篇
  2023年   6篇
  2022年   5篇
  2021年   7篇
  2020年   14篇
  2019年   25篇
  2018年   18篇
  2017年   14篇
  2016年   25篇
  2015年   31篇
  2014年   34篇
  2013年   87篇
  2012年   84篇
  2011年   88篇
  2010年   46篇
  2009年   65篇
  2008年   79篇
  2007年   78篇
  2006年   79篇
  2005年   81篇
  2004年   92篇
  2003年   83篇
  2002年   70篇
  2001年   25篇
  2000年   19篇
  1999年   14篇
  1998年   20篇
  1997年   22篇
  1996年   23篇
  1995年   14篇
  1993年   8篇
  1992年   9篇
  1991年   16篇
  1990年   14篇
  1989年   13篇
  1988年   8篇
  1987年   14篇
  1986年   6篇
  1985年   22篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   7篇
  1977年   11篇
  1976年   8篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
排序方式: 共有1479条查询结果,搜索用时 15 毫秒
101.
Novel Ni(C0)4-promoted tandem cycloadditions of diphenylcyclo- propenone to isothiocyanates and to CS2 were found to provide new heterocyclic spirans, pyrroline-2-one-5-spiro-5′-thiolene-4′-ones and a thiolene-2-one-5-spiro-5′-thiolene-4′-one, respectively, in moderate yields.  相似文献   
102.
The 5H-pyrido[2,3-a]phenoxazin-5-one derivatives and 5H-pyrido[3,2-a]phenoxazin-5-one derivatives were prepared by the condensation of substituted 2-aminophenols with 6,7-dibromo-5,8-quinolinequinone followed by dehalogenation in the presence of sodium hydrosulfite dissolved in aqueous pyridine under a nitrogen atmosphere.  相似文献   
103.
Hydrogen energy is an abundant, clean, sustainable and environmentally friendly renewable energy source. Therefore, the production of hydrogen by photocatalytically splitting water on semiconductors has been considered in recent years as a promising and sustainable strategy for converting solar energy into chemical energy to replace conventional energy sources and to solve the growing problem of environmental pollution and the global energy crisis. However, highly efficient solar-driven photocatalytic hydrogen production remains a huge challenge due to the poor visible light response of available photocatalytic materials and the low efficiency of separation and transfer of photogenerated electron-hole pairs. In the present work, organic heterojunction structures based on bacteriochlorophyll (BChl) and chlorophyll (Chl) molecules were introduced and used for solar-driven photocatalytic hydrogen production from water under visible light. Also, noble metal-free photocatalyst was successfully constructed on Ti3C2Tx nanosheets by simple successive deposition of Chl and BChl, which was used for the photocatalytic splitting water to hydrogen evolution reaction (HER). The results show that the optimal BChl@Chl@Ti3C2Tx composite has a high HER performance with 114 μmol/h/gcat, which is much higher than the BChl@Ti3C2Tx and Chl@Ti3C2Tx composites.  相似文献   
104.
Bipolar electrode-based (BPE-based) electrochromic devices have garnered increasing attention in the past decade. These BPE-based electrochromic devices have been used for analytical health monitoring, point-of-care (POC) diagnostics, and chemical sensing. In this review, we highlight recent progress made regarding BPE-based electrochromic devices constructed for these analytical applications. Various, available electrochromic materials are summarized in the first section, after which the different device types (e. g., paper-based and self-powered) are discussed. Biological- and chemical-based analytical demonstrations of these devices are then reviewed. Finally, we conclude this review with a perspective on the future developments of BPE-based electrochromic devices in analytical applications.  相似文献   
105.
A reversed-phase liquid chromatographic method for the determination of trace amounts of vanadium is described. Metal ions are converted into 2-(8-quinolylazo)-5-N,N-diethylaminophenol chelates in an off-line system. The chelates are injected onto a Zorbax CN column and separated with an aqueous acetonitrile mobile phase containing no chromogenic reagent. Unter these conditions, only vanadium(V) is spectrophotometrically detected at 540 nm among the metal ions Al(III), Ba(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V) and Zn(II). Amounts of 8.0–200 pg of vanadium(V) in 100-μl injections can be determined without interference from 10-fold molar excesses of many cations. At 0.001 a.u.f.s., the detection limit (twice the peak-to-peak noise) for vanadium(V) is 8.0 pg in 100 μl of injected solution and the relative standard deviation at 120 pg of vanadium(V) in a 100-μl injection is 3.5%. The proposed method is applied to the determination of vanadium in rain water and airborne particulates.  相似文献   
106.
107.
Use of a bis(terpyridine)ruthenium(II) derivative as an N-terminal labeling reagent resulted in the simultaneous detection and individual determination of all the N-terminal fragments of the proteins in a mixture without requiring any separation. All of the N-termini of the guanidinated proteins were labeled selectively by the ruthenium complex (-CO-labeling). After chymotryptic digestion, the fragments were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and post-source decay (PSD). The -CO moiety exclusively enhanced N-terminal fragment ions in mass spectra and enabled easy N-terminal sequencing. In a mixture containing three different proteins (lysozyme, ubiquitin, and insulin), all of the N-terminal fragment ions labeled with the ruthenium complex were found to produce uniformly intense peaks without the detection of the other unlabeled fragments. The N-terminal sequences of these ions were determined individually by PSD analysis. Application to unknown proteins from Thermus thermophilus HB8 with two-dimensional electrophoretic separation resulted in the successful determination of the N-terminal sequence and easy identification of the target protein.  相似文献   
108.
We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea mays L. cv. Guarare 8128) plants exposed to ozone (O(3)) using a leaf injury assessment and proteomics approach. Plants grown for 16 days in greenhouse were transferred to an O(3) chamber and exposed continuously to 0.2 ppm O(3) or filtered pollutant-free air for up to 72 h. CBB-stained gels revealed changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein. By Western analysis changes in marker proteins for O(3) damage in leaves by 1-DE were checked. In bean leaves, two superoxide dismutase (SOD) protein (19 and 20 kDa) were dramatically decreased, while ascorbate peroxidase (APX, 25 kDa), small heat shock protein (HSP, 33 kDa), and a naringenin-7-O-methyltransferase (NOMT, 42 kDa) were increased by O(3). In maize leaves, expression levels of catalase (increased), SOD (decreased), and APX (increased) were drastically changed by O(3) depending on the leaf stage, whereas crossreacting HSPs (24 and 30 kDa) and NOMT (41 kDa) proteins were strongly increased in O(3)-stressed younger leaves. These results indicated a clear modulation of oxidative stress-, heat shock-, and secondary metabolism-related proteins by O(3). Finally, 2-DE at 72 h after O(3) exposure revealed changes (induction/suppression) in expression levels of 25 and 12 protein spots in bean and maize leaves, respectively. Out of these, ten and nine nonredundant proteins in bean and maize, respectively, were identified by MS. A novel pathogenesis-related protein 2 may serve as a potential marker for O(3) stress in bean.  相似文献   
109.
This paper deals with the analysis of the temperature dependence of high-frequency EMR (HF-EMR) spectra due to Mn3+ and Mn4+ ions in the lithium manganese spinel LiMn2O4. A range of powder samples obtained by the sol-gel method with calcinations in several temperature ranges were prepared for this study. Based on the initial characterization carried out by a number of techniques, the physicochemical and structural properties of the samples were earlier determined. Independently, temperature magnetization and HF-EMR measurements were carried out. The EMR spectra vary strongly between samples, indicating possible structural or chemical changes. Quantitative analysis of the temperature dependence of the HF-EMR spectra due to Mn3+ and Mn4+ ions in LiMn2O4 is presented in this paper. The spectral analysis concerns the line shape, linewidth, intensity and g-factors. Fittings using the Lorentzian spectral shape and, to a certain extent, the Gaussian spectral shape have been carried out in order to parameterize the temperature dependence of the HF-EMR spectra. This parameterization of the HF-EMR experimental data enables a deeper characterization of the samples. Subsequently, a better insight into the role of the Mn3+ and Mn4+ ions in accounting for the characteristics most suitable for application of LiMn2O4 as a cathode material may be gained.  相似文献   
110.
Structures of the complexes formed in aqueous solutions between zinc(II) and iodide ions have been determined from large-angle X-ray scattering, Raman and far-IR measurements. The coordination in the hydrated Zn2+ hexaaqua ion and the first iodide complex, [ZnI]+, is octahedral, but is changed into tetrahedral in the higher complexes, [ZnI2(H2O)2], [ZnI3(H2O)] and [ZnI4]2–. The Zn-I bond length is 2.635(4)Å in the [ZnI4]2– ion and slightly shorter, 2.592(6)Å, in the two lower tetrahedral complexes. In the octahedral [ZnI(H2O)5]+ complex the Zn-I bond length is 2.90(1)Å. The Zn-O bonding distances in the complexes are approximately the same as that in the hydrated Zn2+ ion, 2.10(1)Å.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号