首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1509篇
  免费   36篇
  国内免费   12篇
化学   1066篇
晶体学   24篇
力学   17篇
数学   39篇
物理学   411篇
  2022年   9篇
  2021年   15篇
  2020年   11篇
  2019年   16篇
  2018年   8篇
  2017年   8篇
  2016年   26篇
  2015年   20篇
  2014年   29篇
  2013年   61篇
  2012年   62篇
  2011年   72篇
  2010年   35篇
  2009年   43篇
  2008年   80篇
  2007年   88篇
  2006年   85篇
  2005年   74篇
  2004年   83篇
  2003年   78篇
  2002年   59篇
  2001年   51篇
  2000年   49篇
  1999年   27篇
  1998年   11篇
  1997年   12篇
  1996年   15篇
  1995年   19篇
  1994年   21篇
  1993年   24篇
  1992年   32篇
  1991年   19篇
  1990年   21篇
  1989年   18篇
  1988年   22篇
  1987年   20篇
  1986年   16篇
  1985年   29篇
  1984年   19篇
  1983年   12篇
  1982年   7篇
  1981年   8篇
  1980年   16篇
  1979年   18篇
  1978年   19篇
  1977年   13篇
  1976年   11篇
  1974年   13篇
  1973年   18篇
  1972年   7篇
排序方式: 共有1557条查询结果,搜索用时 15 毫秒
61.
The relative standard deviation (RSD) of measurements in high-performance liquid chromatography with electrochemical detection (HPLC-ECD) was predicted by a chemometric tool based on the 1/f fluctuation model which is made up of white noise and a Markov process, called the Function of Mutual Information (FUMI) theory. FUMI theory can provide aprecise and reliable detection limit from a single measurement of noise and signal in HPLC-ECD. To obtain RSD (n = 5) for determination of (-)-epicatechin at five concentrations required 12.5 h, while the predicted RSD by FUMI theory required only 0.5 h (one measurement). Moreover, to trace the source of instrumental noise, power spectra of chromatographic baseline were used. Selection of a suitable apparatus in HPLC-ECD system, acquisition of RSD, and detection limits for determination of catechins by HPLC-ECD were simply and easily made by this chemometric tool within a very short time. The use of the FUMI theory for the prediction of measuring precision was more efficient and the optimization was less time-consuming to be suited for determination.  相似文献   
62.
A chemometric tool based on the Function of Mutual Information (FUMI) theory can provide a relative standard deviation (RSD) without repetitive measurements in high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Two parameters: precision (= information content) phi and efficiency (= information content/time) theta, which were calculated from predicted RSD based on the FUMI theory, were used to optimize HPLC-ECD conditions, such as applied potential, flow rate, column length, and size of ODS porous packing. We selected catechins as analytes, and found that the most optimum applied potential and flow rate were +600 mV vs. SCE and 0.9 mL/min, respectively, because they gave the largest phi and theta values. Buffer concentration in mobile phase is less effective for giving large phi and theta values. Since the FUMI theory makes it possible to predict RSD without repetitive measurements, the present method saves considerable amounts of chemicals and experimental time, and was found to be useful for the optimization of experimental conditions for determination by HPLC-ECD.  相似文献   
63.
Celeste-1 is a lab-scale hot cell intended for R&D work in reprocessing of low burn-up spent fuel elements. The studies are concerned with head-end, first separation cycle by Purex Process using mini mixer-settlers and development of analytical techniques. The analytical monitoring for process control purposes is based on several off-line techniques, such as X-ray fluorescence spectrometry, potentiometric titration, -and -spectroscopy, spectrophotometry, fluorimetry, density measurement and gas chromatography. The analytical treatment takes place in a shielded working place analytical hot cell, glove boxes and hoods and some final measurements are made in the associated analytical laboratory. A pneumatic system is used for transporting analytical samples. All analytical procedures are ready and in operation.  相似文献   
64.
We previously developed cyclic ADP-carbocyclic ribose (cADPcR, 2) as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. A series of the N1-ribose modified cADPcR analogues, designed as novel stable mimics of cADPR, which were the 2"-deoxy analogue 3, the 3"-deoxy analogue 4, the 3"-deoxy-2"-O-(methoxymethyl) analogue 5, the 3"-O-methyl analogue 6, the 2",3"-dideoxy analogue 7, and the 2",3"-dideoxydidehydro analogue 8, were successfully synthesized using the key intramolecular condensation reaction with phenylthiophosphate-type substrates. We investigated the conformations of these analogues and of cADPR and found that steric repulsion between both the adenine and N9-ribose moieties and between the adenine and N1-ribose moieties was a determinant of the conformation. The Ca(2+)-mobilizing effects were evaluated systematically using three different biological systems, i.e., sea urchin eggs, NG108-15 neuronal cells, and Jurkat T-lymphocytes. The relative potency of Ca(2+)-mobilization by these cADPR analogues varies depending on the cell-type used: e.g., 3"-deoxy-cADPcR (4) > cADPcR (2) > cADPR (1) in sea urchin eggs; cADPR (1) > cADPcR (2) approximately 3"-deoxy-cADPcR (4) in T-cells; and cADPcR (2) > cADPR (1) > 3"-deoxy-cADPcR (4) in neuronal cells, respectively. These indicated that the target proteins and/or the mechanism of action of cADPR in sea urchin eggs, T-cells, and neuronal cells are different. Thus, this study represents an entry to cell-type selective cADPR analogues, which can be used as biological tools and/or novel drug leads.  相似文献   
65.
Radiation-induced terpolymerizations of methyl α,β,β-trifluoroacrylate (MTFA) with tetrafluoroethylene (TFE) and α-olefins, such as ethylene, propylene, and isobutylene, were carried out in bulk at 25°C for the purpose of controlling the content of ester group in the MTFA-α-olefin alternating copolymers. These monomers polymerized to form alternating terpolymers which contained 50 mole % α-olefin in a wide range of monomer composition. The content of MTFA, namely, the ester group in polymer, can be varied without destruction of the alternating structures between fluoroolefins (MTFA, TFE) and α-olefin by changing the MTFA/TFE ratio in the monomer mixture. The relative reactivities of MTFA and TFE in the terpolymerization were discussed according to kinetic treatments by free propagating and complex mechanisms. The relation between the MTFA/TFE ratio in the monomer mixture and that in terpolymer was explained favourbly by the complex mechanism. It was also concluded that the relative reactivity of MTFA is larger than that of TFE in the terpolymerizations.  相似文献   
66.
67.
Summary A simple optimization method based on the well-known Rs-minimum method and on the information theory of FUMI Φ is proposed. Resolution (Rs), peak area and height (or width) are the only parameters necessary for the calculation of the information Φ and information flow ϑ. The most precise analysis can be selected as the chromatogram having maximal ϑ. Mobile phase composition, column length, flow rate, detection wavelength, amount of internal standard, etc. can be optimized by this method.  相似文献   
68.
Six unnatural nucleotides featuring fluorine-substituted phenyl nucleobase analogues have been synthesized, incorporated into DNA, and characterized in terms of the structure and replication properties of the self-pairs they form. Each unnatural self-pair is accommodated in B-form DNA without detectable structural perturbation, and all are thermally stable and selective to roughly the same degree. Furthermore, the efficiency of polymerase-mediated mispair synthesis is similar for each unnatural nucleotide in the template. In contrast, the efficiency of polymerase-mediated self-pair extension is highly dependent on the specific fluorine substitution pattern. The most promising unnatural base pair candidate of this series is the 3-fluorobenzene self-pair, which is replicated with reasonable efficiency and selectivity.  相似文献   
69.
An amphiphilic rectangular-shaped photochromic diarylethene bearing two hydrophobic alkyl chains and two hydrophilic tri(ethylene glycol) chains was synthesized, and its photoinduced morphological transformation in water was investigated. Two unexpected phenomena were revealed in the course of the experiments: a re-entrant photoinduced macroscopic morphological transformation and temperature-dependent kinetic products of supramolecular assembly. When the pure closed-ring isomer was dispersed in water, a re-entrant photoinduced morphological transformation, that is, a photoinduced transition from the hydrated phase to the dehydrated phase and then back to the hydrated phase, was observed by optical microscopy upon irradiation with green light at 20 °C; this was interpreted by the V-shaped phase diagram of the LCST transition. The aqueous assembly of the pure closed-ring isomer was controlled by changing the temperature; specifically, rapid cooling to 15 and 5 °C gave J and H aggregates, respectively, as the kinetic products. The thermodynamic product at both temperatures was a mixture of mostly H aggregate with a small amount of J aggregate. This behavior was rationalized by the temperature-dependent potential energy surface of the supramolecular assembly.  相似文献   
70.
Recognition-driven modification has been emerging as a novel approach to modifying biomolecular targets of interest site-specifically and efficiently. To this end, protein modular adaptors (MAs) are the ideal reaction model for recognition-driven modification of DNA as they consist of both a sequence-specific DNA-binding domain (DBD) and a self-ligating protein-tag. Coupling DNA recognition by DBD and the chemoselective reaction of the protein tag could provide a highly efficient sequence-specific reaction. However, combining an MA consisting of a reactive protein-tag and its substrate, for example, SNAP-tag and benzyl guanine (BG), revealed rather nonselective reaction with DNA. Therefore new substrates of SNAP-tag have been designed to realize sequence-selective rapid crosslinking reactions of MAs with SNAP-tag. The reactions of substrates with SNAP-tag were verified by kinetic analyses to enable the sequence-selective crosslinking reaction of MA. The new substrate enables the distinctive orthogonality of SNAP-tag against CLIP-tag to achieve orthogonal DNA-protein crosslinking by six unique MAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号