首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   18篇
  国内免费   4篇
化学   242篇
晶体学   16篇
力学   1篇
数学   23篇
物理学   50篇
  2023年   5篇
  2022年   10篇
  2021年   7篇
  2020年   10篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   12篇
  2015年   10篇
  2014年   9篇
  2013年   21篇
  2012年   39篇
  2011年   25篇
  2010年   14篇
  2009年   7篇
  2008年   19篇
  2007年   21篇
  2006年   15篇
  2005年   15篇
  2004年   16篇
  2003年   14篇
  2002年   11篇
  2001年   3篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
排序方式: 共有332条查询结果,搜索用时 0 毫秒
101.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   
102.
The reaction of Ru(trpy)Cl(3) (trpy = 2,2':6',2"-terpyridine) with the pyridine-based imine function N(p)C(5)H(4)-CH=N(i)-NH-C(6)H(5) (L), incorporating an NH spacer between the imine nitrogen (N(i)) and the pendant phenyl ring, in ethanol medium followed by chromatographic work up on a neutral alumina column using CH(3)CN/CH(2)Cl(2) (1:4) as eluent, results in complexes of the types [Ru(trpy)(L')](ClO(4))(2) (1) and [Ru(trpy)(L)Cl]ClO(4) (2). Although the identity of the free ligand (L) has been retained in complex 2, the preformed imine-based potentially bidentate ligand (L) has been selectively transformed into a new class of unusual imine-amidine-based tridentate ligand, N(p)C(5)H(4)-CH=N(i)-N(C(6)H(5))C(CH(3))=N(a)H (L'), in 1. The single-crystal X-ray structures of the free ligand (L) and both complexes 1 and 2 have been determined. In 2, the sixth coordination site, that is, the Cl(-) function, is cis to the pyridine nitrogen (N(p)) of L which in turn places the NH spacer away from the Ru-Cl bond, whereas, in 1, the corresponding sixth position, that is, the Ru-N(a) (amidine) bond, is trans to the pyridine nitrogen (N(p)) of L'. The trans configuration of N(a) with respect to the N(p) of L' in 1 provides the basis for the selective L --> L' transformation in 1. The complexes exhibit strong Ru(II) --> pi* (trpy) MLCT transitions in the visible region and intraligand transitions in the UV region. The lowest energy MLCT band at 510 nm for 2 has been substantially blue-shifted to 478 nm in the case of 1. The reversible Ru(III)-Ru(II) couples for 1 and 2 have been observed at 0.80 and 0.59 V versus SCE, respectively. The complexes are weakly luminescent at 77 K, exhibiting emissions at lambda(max), 598 nm [quantum yield (Phi) = 0.43 x 10(-2)] and 574 nm (Phi = 0.28 x 10(-2)) for 1 and 2, respectively.  相似文献   
103.
The complexes [Zn(en)3]X2·n H2O, where en = ethylenediamine, X = Cl?, Br? or 12SO2?4, n = 1 or 0.5, and [Zn(tn)2]X2·n H2O, where tn=1,3-diaminopropane, X=Cl?, Br? or 12SO2?4, n = 0 or 0.25, have been synthesized and their thermal investigations carried out. The complexes were characterized by elemental analysis and IR spectral data. These complexes have been observed to decompose through several isolable as well as non-isolable complex species as intermediates during heating. [Zn(tn)2]SO4 undergoes solid-state phase transition in the temperature range 126–145°C. ZnenSO4 and ZntnX2 (X = Cl?, Br? or 12SO2?4) have been synthesized pyrolytically in the solid state from their corresponding mother diamine complexes. ZnenSO4 and ZntnX2 (X = Cl?, Br? or 12SO2?4) complexes decompose through non-isolable hemidiamine species. ZnX2 (X = Cl? or Br?) complexes of tn undergo melting after formation of the monodiamine species. In contrast, the corresponding en complexes undergo melting at non-stoichiometric composition. Diamine (en or tn) is found to be bridging in all monodiamine (en or tn) complexes; whilst their mother complexes possess chelated en or tn. The thermal stability sequence of en and tn complexes of Zn(II) is ZnCl2 < ZnBr2 < ZnSO4. ΔH values are reported for some steps of decomposition. Possible mechanistic paths have been reported for each step of decomposition.  相似文献   
104.
Ruthenium-terpyridine complexes incorporating a 2,2'-dipyridylamine ancillary ligand [Ru(II)(trpy)(L)(X)](ClO(4))(n) [trpy = 2,2':6',2' '-terpyridine; L = 2,2'-dipyridylamine; and X = Cl(-), n = 1 (1); X = H(2)O, n = 2 (2); X = NO(2)(-), n = 1 (3); X = NO(+), n = 3 (4)] were synthesized in a stepwise manner starting from Ru(III)(trpy)(Cl)(3). The single-crystal X-ray structures of all of the four members (1-4) were determined. The Ru(III)/Ru(II) couple of 1 and 3 appeared at 0.64 and 0.88 V versus the saturated calomel electrode in acetonitrile. The aqua complex 2 exhibited a metal-based couple at 0.48 V in water, and the potential increased linearly with the decrease in pH. The electron-proton content of the redox process over the pH range of 6.8-1.0 was calculated to be a 2e(-)/1H(+) process. However, the chemical oxidation of 2 by an aq Ce(IV) solution in 1 N H(2)SO(4) led to the direct formation of corresponding oxo species [Ru(IV)(trpy)(L)(O)](2+) via the concerted 2e(-)/2H(+) oxidation process. The two successive reductions of the coordinated nitrosyl function of 4 appeared at +0.34 and -0.34 V corresponding to Ru(II)-NO(+) --> Ru(II)-NO* and Ru(II)-NO* --> Ru(II)-NO(-), respectively. The one-electron-reduced Ru(II)-NO* species exhibited a free-radical electron paramagnetic resonance signal at g = 1.990 with nitrogen hyperfine structures at 77 K. The NO stretching frequency of 4 (1945 cm(-1)) was shifted to 1830 cm(-1) in the case of [Ru(II)(trpy)(L)(NO*)](2+). In aqueous solution, the nitrosyl complex 4 slowly transformed to the nitro derivative 3 with the pseudo-first-order rate constant of k(298)/s(-1) = 1.7 x 10(-4). The chloro complex 1 exhibited a dual luminescence at 650 and 715 nm with excited-state lifetimes of 6 and 1 micros, respectively.  相似文献   
105.
Summary Two complextrans-NiL2 (NCS)2] (L =N, N-dimethyl-1,3-propanediamine) synthesised from solution in two isomeric forms (1) and (2), exhibit similar colours, magnetic moments and electronic spectra, but differ in their i.r. spectra and x-ray powder diffraction patterns. We suggest they possesstrans- chair-chair andcis-chair-chair chelate conformations, respectively. Complexes (1) (2) isomerise (temperature range 382–397.5 K; H = 5.12 kJ mol–1) in the solid state. Isomer (2) is converted into isomer (1) upon recrystallisation from chloroform. Thetrans-[NiL2NCSe)2] complex does not isomerise upon heating. The compound [NiL(NCS)2], prepared by thermal decomposition of [NiL2(NCS)2], possesses octahedral polymeric structure in which the diamine is chelated and all the thiocyanato groups are bridging.  相似文献   
106.
107.
Oxidative transformations utilizing molecular oxygen (O2) as the stoichiometric oxidant are of paramount importance in organic synthesis from ecological and economical perspectives. Alcohol oxidation reactions that employ O2 are scarce in homogeneous catalysis and the efficacy of such systems has been constrained by limited substrate scope (most involve secondary alcohol oxidation) or practical factors, such as the need for an excess of base or an additive. Catalytic systems employing O2 as the “primary” oxidant, in the absence of any additive, are rare. A solution to this longstanding issue is offered by the development of an efficient ruthenium‐catalyzed oxidation protocol, which enables smooth oxidation of a wide variety of primary, as well as secondary benzylic, allylic, heterocyclic, and aliphatic, alcohols with molecular oxygen as the primary oxidant and without any base or hydrogen‐ or electron‐transfer agents. Most importantly, a high degree of selectivity during alcohol oxidation has been predicted for complex settings. Preliminary mechanistic studies including 18O labeling established the in situ formation of an oxo–ruthenium intermediate as the active catalytic species in the cycle and involvement of a two‐electron hydride transfer in the rate‐limiting step.  相似文献   
108.
We have developed an efficient one-pot, two-step reaction protocol for the synthesis of eight-membered 1,5-benzodiazocine-2-ones by Ugi four-center three-component coupling reaction (U-4C-3CR) and subsequent reductive cyclization using Fe/NH4Cl in protic solvent.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号