首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   1篇
化学   60篇
晶体学   3篇
力学   1篇
数学   7篇
物理学   28篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
41.
42.
Methacrylate-containing oligosilsesquioxanes with a molecular mass of 700–4000 are synthesized via the acidic hydrolytic polycondensation of γ-methacryloxy-propyltrimethoxysilane (A-174) in the medium of methyl methacrylate or in a mixture of bis(methacrylates). The structure of the oligomers is studied by 1Н and 29Si NMR spectroscopy and MALDI-TOF mass spectrometry.  相似文献   
43.
Immobilization of invertase in conducting copolymer matrix of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole with pyrrole (poly(DDTP-co-Py)) was achieved via electrochemical polymerization. Kinetic parameters, Michaelis-Menten constant, Km and the maximum reaction rate, Vmax were investigated. Operational stability and temperature optimization of the enzyme electrodes were also examined.

Immobilized invertase reveals maximum activity at 50°C and; pH 8 and pH 4 for two copolymer matrices. Although the same two monomers are utilized for the copolymer synthesis, the way the copolymer is produced results in quite different responses in terms of enzyme activity, optimum pH and kinetic parameters. Excellent operational stability of the enzyme electrodes enables their repetitive use in the determination of invert sugar.  相似文献   
44.
Self-cleaning photocatalytic TiO2 films are beneficial since they reduce the maintenance cost and enhance the efficiency of various optical systems, especially thermal and photovoltaic solar systems. However, the presence of a TiO2 layer on glass reduces the transmission of incident light, which leads to a decrease in efficiency. This drawback can be overcome by applying a layer of anti-reflective coating beneath the TiO2 layer. Generally, the anti-reflective layer is porous silica. The presence of the anti-reflective layer compensates for the loss of light transmittance caused by the photocatalytic TiO2 top layer. This paper reviews some of the previous and the latest fundamental studies in the literature on anti-reflective, self-cleaning and multi-functional films.  相似文献   
45.

Purpose

The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.

Methods

The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.

Results

The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.

Conclusion

The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA.  相似文献   
46.
The effect of non-resonant intense laser field on the intersubband-related optical absorption coefficient and refractive index change in the asymmetric n-type double δ-doped GaAs quantum well is theoretically investigated. The confined energy levels and corresponding wave functions of this structure are calculated by solving the Schrödinger equation in the laser-dressed confinement potential within the framework of effective mass approximation. The optical responses are reported as a function of the δ-doped impurities density and the applied non-resonant intense laser field. Additionally, the calculated results also reveal that the non-resonant intense laser field can be used as a way to control the electronic and optical properties of the low dimensional semiconductor nano-structures.  相似文献   
47.
Savchenkov  E. N.  Dubikov  A. V.  Sharaeva  A. E.  Burimov  N. I.  Shandarov  S. M.  Esin  A. A.  Akhmatkhanov  A. R.  Shur  V. Ya. 《JETP Letters》2020,112(10):602-606

A 632.8-nm radiation-induced change in the conductivity of a regular domain structure (RDS) formed in a 5% MgO:LiNbO3 crystal has been detected for the first time. As a result, the relaxation rate for the Bragg diffraction efficiency on the RDS, which is observed after the application of an external electric field, increases with the intensity of a probe beam. This dependence is linear in the initial stage of relaxation caused by the screening of the external field because of the redistribution of charges over tilted conductive domain walls of the RDS. For the probe beam with an intensity of 49 mW/mm2, the induced effective conductivity of the RDS, which is estimated as σeff = 3.5×10−9Ω−1m−1, is more than four orders of magnitude higher than the dark conductivity of the single-domain MgO:LiNbO3 sample.

  相似文献   
48.
49.
 Unsymmetrically substituted metal-phthalocyanines composed of three hexylthio groups and one 1-chloro-3,4-dicyano-6-[2-(2-pyridylmethylamino)phenylthio]benzene moiety was prepared by cyclization of the reactants in the presence of the anhydrous metal salts Zn(CH3COO)2, NiCl2, and CoCl2. The new unsymmetric phthalocyanines are very soluble in common organic solvents. The compounds were characterised by their elemental analyses, IR, 1H NMR, MS and UV/Vis spectra.  相似文献   
50.
The differential cross-section of electron Raman scattering and the Raman gain arecalculated and analysed in the case of prismatic quantum dots with equilateral trianglebase shape. The study takes into account their dependencies on the size of the triangle,the influence of externally applied electric field as well as the presence of an ionizeddonor center located at the triangle’s orthocenter. The calculations are made within theeffective mass and parabolic band approximations, with a diagonalization scheme beingapplied to obtain the eigenfunctions and eigenvalues of the x-y Hamiltonian. The incidentand secondary (scattered) radiation have been considered linearly-polarized along they-direction, coinciding with the direction of theapplied electric field. For the case with an impurity center, Raman scattering with theintermediate state energy below the initial state one has been found to show maximumdifferential cross-section more than by an order of magnitude bigger than that resultingfrom the scheme with lower intermediate state energy. The Raman gain has maximum magnitudearound 35 nm dot size andelectric field of 40 kV/cm forthe case without impurity and at maximum considered values of the input parameters for thecase with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in bothcases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号