首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14549篇
  免费   2131篇
  国内免费   1473篇
化学   10209篇
晶体学   161篇
力学   991篇
综合类   115篇
数学   1654篇
物理学   5023篇
  2024年   153篇
  2023年   291篇
  2022年   490篇
  2021年   579篇
  2020年   577篇
  2019年   679篇
  2018年   437篇
  2017年   430篇
  2016年   637篇
  2015年   619篇
  2014年   744篇
  2013年   945篇
  2012年   1219篇
  2011年   1231篇
  2010年   834篇
  2009年   736篇
  2008年   863篇
  2007年   769篇
  2006年   780篇
  2005年   633篇
  2004年   482篇
  2003年   409篇
  2002年   429篇
  2001年   377篇
  2000年   277篇
  1999年   302篇
  1998年   228篇
  1997年   210篇
  1996年   251篇
  1995年   185篇
  1994年   167篇
  1993年   128篇
  1992年   133篇
  1991年   130篇
  1990年   97篇
  1989年   103篇
  1988年   63篇
  1987年   60篇
  1986年   63篇
  1985年   50篇
  1984年   39篇
  1983年   39篇
  1982年   30篇
  1981年   27篇
  1980年   27篇
  1978年   24篇
  1977年   18篇
  1976年   20篇
  1975年   17篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Red ginseng (RG), which is obtained from heated Panax ginseng and is produced by steaming followed by drying, is a valuable herb in Asian countries. Steamed ginseng dew (SGD) is a by-product produced in processing red ginseng. In the present study, phytochemical profiling of extracts of red ginseng and steamed ginseng dew was carried out using gas chromatography-mass spectrometry (GC-MS) and rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) analysis. Additionally, antioxidant activities (DPPH, ·OH, and ABTS scavenging ability) and whitening activities (tyrosinase and elastase inhibitory activity) were analyzed. Phytochemical profiling revealed the presence of 66 and 28 compounds that were non-saponin components in chloroform extracts of red ginseng and steamed ginseng dew (RG-CE and SGD-CE), respectively. Meanwhile, there were 20 ginsenosides identified in n-butanol extracts of red ginseng and steamed ginseng dew (RG-NBE and SGD-NBE). By comparing the different polar extracts of red ginseng and steamed ginseng dew, it was found that the ethyl acetate extract of red ginseng (RG-EAE) had the best antioxidant capacity and whitening effect, the water extract of steamed ginseng dew (SGD-WE) had stronger antioxidant capacity, and the SGD-NBE and SGD-CE had a better whitening effect. This study shows that RG and SGD have tremendous potential to be used in the cosmetic industries.  相似文献   
32.
Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation. As such it has emerged as a popular technique for tracking biological species and events. However, the small Stokes shift of most NIR dyes often results in a low signal-to-noise ratio and self-quenching due to crosstalk between the excitation and emission spectra. With this research, we developed a NIR-based fluorescent probe WD-HOCl for hypochlorous acid (HOCl) detection using the NIR dye TJ730 as the fluorophore, which exhibits a large Stokes shift of 156 nm, with no crosstalk between the excitation and emission spectra. It contains acyl hydrazide as the responsive group and a pyridinium cation as the mitochondria-targeting group. The fluorescence intensity of WD-HOCl was enhanced by 30.1-fold after reacting with HOCl. Imaging studies performed using BV-2 cells indicated that WD-HOCl could be used for endogenous HOCl detection and imaging in living cells exposed to glucose and oxygen deprivation/reperfusion. Finally, we demonstrated that inhibiting the expression of NOX2 reduced the HOCl levels and the severity of oxidative stress during stroke in a mouse model.

Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation.  相似文献   
33.
The synthesis of air-stable, high-performance single-molecule magnets (SMMs) is of great significance for their practical applications. Indeed, Ln complexes with high coordination numbers are satisfactorily air stable. However, such geometries easily produce spherical ligand fields that minimize magnetic anisotropy. Herein, we report the preparation of three air-stable eight-coordinate mononuclear Dy(iii) complexes with triangular dodecahedral geometries, namely, [Dy(BPA-TPA)Cl](BPh4)2 (1) and [Dy(BPA-TPA)(X)](BPh4)2·nCH2Cl2 (X = CH3O and n = 1 for 2; L = PhO and n = 2 for 3), using a novel design concept in which the bulky heptadentate [2,6-bis[bis(2-pyridylmethyl)amino]methyl]-pyridine (BPA-TPA) ligand enwraps the Dy(iii) ion through weak coordinate bonds leaving only a small vacancy for a negatively charged (Cl), methoxy (CH3O) or phenoxy (PhO) moiety to occupy. Magnetic measurements reveal that the single-molecule magnet (SMM) property of complex 1 is actually poor, as there is almost no energy barrier. However, complexes 2 and 3 exhibit fascinating SMM behavior with high energy barriers (Ueff = 686 K for 2; 469 K for 3) and magnetic hysteresis temperatures up to 8 K, which is attributed to the pseudolinear ligand field generated by one strong, highly electrostatic Dy–O bond. Ab initio calculations were used to show the apparent difference in the magnetic dynamics of the three complexes, confirming that the pseudo-mono-axial ligand field has an important effect on high-performance SMMs compared with the local symmetry. This study not only presents the highest energy barrier for a triangular dodecahedral SMM but also highlights the enormous potential of the pseudolinear Dy–L ligand field for constructing promising SMMs.

Air-stable triangular dodecahedral Dy(iii) single-ion magnets with pseudo-mono-axial linear ligand fields exhibit high energy barrier exceeding 600 K, which represent the highest energy barrier for mononuclear SMMs with triangular dodecahedron.  相似文献   
34.
35.
With the development and application of nanomaterials, their impact on the environment and organisms has attracted attention. As a common nanomaterial, nano-titanium dioxide (nano-TiO2) has adsorption properties to heavy metals in the environment. Quantitative structure-activity relationship (QSAR) is often used to predict the cytotoxicity of a single substance. However, there is little research on the toxicity of interaction between nanomaterials and other substances. In this study, we exposed human renal cortex proximal tubule epithelial (HK-2) cells to mixtures of eight heavy metals with nano-TiO2, measured absorbance values by CCK-8, and calculated cell viability. PLS and two ensemble learning algorithms are used to build multiple QSAR models for data sets, and the test set R2 is increased from 0.38 to 0.78 and 0.85, and RMSE is decreased from 0.18 to 0.12 and 0.10. After selecting the better random forest algorithm, the K-means clustering algorithm is used to continue to optimize the model, increasing the test set R2 to 0.95 and decreasing the RMSE to 0.08 and 0.06. As a reliable machine algorithm, random forest can be used to predict the toxicity of the mixture of nano-metal oxides and heavy metals. The cluster analysis can effectively improve the stability and predictability of the model, and provide a new idea for the prediction of cytotoxicity model in the future.  相似文献   
36.
Journal of Thermal Analysis and Calorimetry - Di-tert-butyl peroxy-hexahydro terephthalate (HTP-65W), a newly developed organic peroxide, has been used in manufacturing...  相似文献   
37.
Low-bandgap organic semiconductors have attracted much attention for their multiple applications in optoelectronics. However, the realization of narrow bandgap is challenging particularly for small molecules. Herein, we have synthesized four quinoidal compounds, i. e., QSN3 , QSN4 , QSN5 and QSN6 , with electron rich S,N-heteroacene as the quinoidal core and indandione as the end-groups. The optical bandgap of the quinoidal compounds is systematically decreased with the extension of quinoidal skeleton, while maintaining stable closed-shell ground state. QSN6 absorbs an intense absorption in the first and second near-infrared region in the solid state, and has extremely low optical bandgap of 0.74 eV. Cyclic voltammetry analyses reveal that the lowest unoccupied molecular orbital (LUMO) energy levels of the four quinoidal compounds all lie below −4.1 eV, resulting in good electron-transporting characteristics in organic thin-film transistors. These results demonstrated that the combination of π-extended quinoidal core and end-groups in quinoidal compounds is an effective strategy for the synthesis of low-bandgap small molecules with good stability.  相似文献   
38.
Dynamic emissive materials in aqueous media have received much attention owing to their ease of preparation, tunable luminescence and environmental friendliness. However, hydrophobic fluorophores usually suffer from aggregation-caused quenching in water. In this work, we constructed an artificial light-harvesting system by using a non-covalent aggregation-induced emission dimer as antenna and energy donor. The dimer is quadruple hydrogen bonded from a ureidopyrimidinone derivative (M) containing a tetraphenylethylene group. The dispersed nano-assemblies based on the dimer in aqueous media were fabricated with the help of surfactant. By loading a hydrophobic acceptor molecule DBT into the nano-assemblies, man-made light-harvesting nanoparticles were fabricated, showing considerable energy transfer efficiency and a relatively high antenna effect. Additionally, the fluorescence color of the system can be gradually tuned by varying the content of the acceptors. This study provides a general way for the construction of an aqueous light-harvesting system based on a supramolecular dimer, which is important for potential application in luminescent materials.  相似文献   
39.
40.
本文通过固结磨料球与KDP晶体对磨的单因素试验探究固结磨料球中反应物种类、磨粒浓度、反应物浓度、基体硬度对摩擦系数、磨痕截面积和磨痕处粗糙度的影响,试验结果表明:KHCO3固结磨料球对磨后磨痕对称性好,磨痕处的粗糙度值低;磨痕截面积随磨粒和反应物浓度的增加而增大,随基体硬度的增大而降低;磨痕处粗糙度随磨粒和反应物浓度的增加先降低后上升,随基体硬度的增大先上升后降低;摩擦系数受磨粒和反应物浓度影响不明显,随基体硬度的增大而降低。选择KHCO3作为反应物,Ⅰ基体,磨粒浓度为基体质量的100%,反应物浓度为15%制备固结磨料球与KDP晶体对磨后的磨痕轮廓对称度好且磨痕处粗糙度值低,以该组分制备固结磨料垫干式抛光KDP晶体,可实现晶体表面粗糙度Sa值为18.50 nm,材料去除率为130 nm/min的高效精密加工。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号