首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5779篇
  免费   308篇
  国内免费   41篇
化学   3867篇
晶体学   28篇
力学   157篇
数学   889篇
物理学   1187篇
  2023年   52篇
  2022年   78篇
  2021年   102篇
  2020年   160篇
  2019年   144篇
  2018年   103篇
  2017年   78篇
  2016年   234篇
  2015年   178篇
  2014年   231篇
  2013年   319篇
  2012年   468篇
  2011年   551篇
  2010年   286篇
  2009年   198篇
  2008年   380篇
  2007年   382篇
  2006年   365篇
  2005年   329篇
  2004年   238篇
  2003年   174篇
  2002年   139篇
  2001年   79篇
  2000年   62篇
  1999年   41篇
  1998年   40篇
  1997年   31篇
  1996年   55篇
  1995年   58篇
  1994年   40篇
  1993年   52篇
  1992年   37篇
  1991年   26篇
  1990年   21篇
  1989年   22篇
  1988年   15篇
  1987年   15篇
  1986年   18篇
  1985年   31篇
  1984年   18篇
  1983年   20篇
  1982年   25篇
  1981年   16篇
  1980年   19篇
  1979年   26篇
  1978年   16篇
  1977年   24篇
  1976年   26篇
  1975年   18篇
  1973年   37篇
排序方式: 共有6128条查询结果,搜索用时 0 毫秒
861.
The presence of water molecules plays an important role in the accuracy of ligand-protein docking predictions. Comprehensive docking simulations have been performed on a large set of ligand-protein complexes whose crystal structures contain water molecules in their binding sites. Only those water molecules found in the immediate vicinity of both the ligand and the protein were considered. We have investigated whether prior optimization of the orientation of water molecules in either the presence or absence of the bound ligand has any effect on the accuracy of docking predictions. We have observed a statistically significant overall increase in accuracy when water molecules are included during docking simulations and have found this to be independent of the method of optimization of the orientation of water molecules. These results confirm the importance of including water molecules whenever possible in a ligand-protein docking simulation. Our findings also reveal that prior optimization of the orientation of water molecules, in the absence of any bound ligand, does not have a detrimental effect on the improved accuracy of ligand-protein docking. This is important, given the use of docking simulations to predict the binding modes of new ligands or drug molecules.  相似文献   
862.
A new web portal for the CHARMM macromolecular modeling package, CHARMMing (CHARMM interface and graphics, http://www.charmming.org), is presented. This tool provides a user-friendly interface for the preparation, submission, monitoring, and visualization of molecular simulations (i.e., energy minimization, solvation, and dynamics). The infrastructure used to implement the web application is described. Two additional programs have been developed and integrated with CHARMMing: GENRTF, which is employed to define structural features not supported by the standard CHARMM force field, and a job broker, which is used to provide a portable method for using grid and cluster computing with CHARMMing. The use of the program is described with three proteins: 1YJP , 1O1O , and 1UFY . Source code is provided allowing CHARMMing to be downloaded, installed, and used by supercomputing centers and research groups that have a CHARMM license. Although no software can replace a scientist's own judgment and experience, CHARMMing eases the introduction of newcomers to the molecular modeling discipline by providing a graphical method for running simulations.  相似文献   
863.
864.
865.
The cost-effective production of flexible electronic components will profit considerably from the development of solution-processable, organic semiconductor materials. Particular attention is focused on soluble semiconductors for organic field-effect transistors (OFETs). The hitherto differentiation between "small molecules" and polymeric materials no longer plays a role, rather more the ability to process materials from solution to homogeneous semiconducting films with optimal electronic properties (high charge-carrier mobility, low threshold voltage, high on/off ratio) is pivotal. Key classes of materials for this purpose are soluble oligoacenes, soluble oligo- and polythiophenes and their respective copolymers, and oligo- and polytriarylamines. In this context, micro- or nanocrystalline materials have the general advantage of somewhat higher charge-carrier mobilities, which, however, could be offset in the case of amorphous, glassy materials by simpler and more reproducible processing.  相似文献   
866.
867.
Halogenated analogues of ethyl diazoacetate are synthesised by a novel and highly efficient procedure and give halocyclopropanes in good to excellent yields when exposed to a Rh(ii) catalyst in the presence of alkenes.  相似文献   
868.
The incorporation of small molecules into lipid bilayers is a process of biological importance and clinical relevance that can change the material properties of cell membranes and cause deleterious side effects for certain drugs. Here we report the direct observation, using surface-enhanced Raman and IR spectroscopies (SERS, SEIRA), of the insertion of ibuprofen molecules into hybrid lipid bilayers. The alkanethiol-phospholipid hybrid bilayers were formed onto gold nanoshells by self-assembly, where the underlying nanoshell substrates provided the necessary enhancements for SERS and SEIRA. The spectroscopic data reveal specific interactions between ibuprofen and phospholipid moieties and indicate that the overall hydrophobicity of ibuprofen plays an important role in its intercalation in these membrane mimics.  相似文献   
869.
Circular dichroism (CD) is widely used in the structural characterization and secondary structure determination of proteins. The vacuum UV region (below 190 nm), where charge-transfer transitions have an influence on the CD spectra, can be accessed using synchrotron radiation circular dichroism (SRCD) spectroscopy. Recently, charge-transfer transitions in a conformationally diverse set of dipeptides have been characterized ab initio using complete active space self-consistent field calculations, and the relevant charge distributions have been parametrized for use in the matrix method for calculations of protein CD. Here, we present calculations of the vacuum UV CD spectra of 71 proteins, for which experimental SRCD spectra and X-ray crystal structures are available. The theoretical spectra are calculated considering charge-transfer and side chain transitions. This significantly improves the agreement with experiment, raising the Spearman correlation coefficient between the calculated and the experimental intensity at 175 nm from 0.12 to 0.79. The influence of the conformation on charge-transfer transitions is analyzed in detail, showing that the n --> pi* charge-transfer transitions are most important in alpha-helical proteins, whereas in beta strand proteins the pi --> pi* charge-transfer transition along the chain in the amino- to carboxy-end direction is most dominant.  相似文献   
870.
Three novel classes of porphyrazine-like structures were synthesized to form modular structures in which lipophilicity and water solubility can be tuned. Subtle modification of solubility is an important criterion in selecting a compound for biological photosensitization. The general structure takes the form H2[pz(AnB4-n)], where the core is a porphyrazine (pz) group, A is a pyrrole ring with two sulfide linkages (SR moieties) and B is a pyrrole fused with a 4,7-bis(isopropyloxy)benzo group, with n=4, 3 and 2. These molecules possess their longest wavelength absorption band between 700 and 810 nm, hence laser beams of higher tissue penetration depth could be used to illuminate them in photodynamic therapy (PDT). Armed with absorption bands in the far-red and near-infrared (near-IR), and a capability to tune the solubility, these molecules could make for better sensitizers because of optimized uptake by lipidic membranes and better optical properties. We tested several derivatives of the A4, A3B and A2B2 structures for their singlet oxygen quantum yields in methanol and in liposomes, using 9,10-dimethyl anthracene (DMA) as a singlet oxygen target. Singlet oxygen quantum yields in liposomes ranged from 0.01 to 0.44, with the A2B2 group showing the most promise. In the binding assay to find the equilibrium binding constant, Kb, we detected fluorescence changes due to a change in environment. Peripheral long-chain moieties (the R group in the SR moieties) dominate lipid binding. These moieties range in the hydrophobicity that they induce from C8H17 and benzene, which rendered the molecule totally insoluble in water, to polyethylene glycol (PEG) and carboxylate groups, which imparted water solubility. Each molecule had between 4 and 8 such identical chains. Chains bearing an ether or ester link resulted in measurable equilibrium constants, with a higher Kb for ether substituents. Results for Kb ranged from 0.23 to 26.52 (mg mL(-1))(-1). A delicate balance exists between water solubility and good partitioning to membranes. In general, a higher oxygen-to-carbon ratio in the chains improves binding. Fewer chains and a centrally coordinated zinc ion further improve binding and singlet oxygen production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号