首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2694篇
  免费   35篇
  国内免费   19篇
化学   1667篇
晶体学   79篇
力学   48篇
数学   390篇
物理学   564篇
  2021年   16篇
  2020年   18篇
  2019年   29篇
  2017年   14篇
  2016年   35篇
  2015年   36篇
  2014年   39篇
  2013年   114篇
  2012年   98篇
  2011年   161篇
  2010年   99篇
  2009年   75篇
  2008年   128篇
  2007年   119篇
  2006年   114篇
  2005年   99篇
  2004年   121篇
  2003年   85篇
  2002年   74篇
  2001年   61篇
  2000年   43篇
  1999年   35篇
  1998年   48篇
  1997年   33篇
  1996年   61篇
  1995年   57篇
  1994年   37篇
  1993年   43篇
  1992年   42篇
  1991年   34篇
  1990年   29篇
  1989年   38篇
  1988年   32篇
  1987年   30篇
  1986年   21篇
  1985年   43篇
  1984年   53篇
  1983年   27篇
  1982年   40篇
  1981年   31篇
  1980年   36篇
  1979年   41篇
  1978年   42篇
  1977年   48篇
  1976年   33篇
  1975年   30篇
  1974年   37篇
  1973年   31篇
  1972年   17篇
  1971年   15篇
排序方式: 共有2748条查询结果,搜索用时 250 毫秒
81.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   
82.
Copper(II) fluorine reacts with the pentafluorides, TaF5, PF5, and AsF5, in acetonitrile to give solvated CuII, hexafluoroanion salts. These react with copper metal to give the corresponding CuI compounds. Similar reactions occur between AsF5 and silver(I) or thallium(I) fluorides, but silver(II) fluoride reacts with MeCN, and AgI hexafluoroarsenate is formed. PF5 oxidises Cu slowly in MeCN to give CuI hexafluorophosphate, but AsF5 has no oxidising ability towards metals in MeCN. Spectroscopic data for Cu(MF6)2·5MeCN and Cu(MF6)·4MeCN (M = Ta or P) are discussed.  相似文献   
83.
Abstract— The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure. Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA. Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application. They were highest within 1 h after ALA injection, thereafter declining rapidly. This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX). Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream. This pattern was again matched by injected, exogenous PpIX. After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base. Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light). Significant, but limited (<1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals. The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature. Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity. Tumor destruction did not reach the tumor base, regardless of treatment conditions.  相似文献   
84.
The reaction between 2,5-bis(trimethylsilylethynyl)thiophene and Co2(CO)8 or Co2(CO)6(X), (X = dppa, dppm), gave rise to the formation of substituted ethynylcobalt complexes containing one or two Co2(CO)6 or Co2(CO)4(X) units, 2-[Co2(CO)4(X){μ22-(SiMe3)C2}]-5-(Me3SiCC)C4H2S (X = 2CO (1), dppa (3) or dppm (4)) and 2,5-[Co2(CO)4(X){μ22-SiMe3C2}]2C4H2S (X = 2CO (2), dppa (5) or dppm (6)). Desilylation of the non-metallated and metallated alkynes in 3, 4 and 6 occurred on treatment with KOH and tetrabutylammonium fluoride to give 2-[Co2(CO)4(μ-X){μ22-SiMe3C2}]-5-(CCH)C4H2S (X = dppa (7), dppm (8)) and 2,5-[Co2(CO)4(μ-dppm){μ22-HC2}]2C4H2S (9), respectively. Crystals of 6 suitable for single-crystal X-ray diffraction were grown and the molecular structure of this compound is discussed. A comparative electrochemical study of all these complexes is presented by means of the cyclic and square-wave voltammetry techniques.  相似文献   
85.
Biological applications of infrared spectroscopy have pressed for ever greater instrumental capabilities in terms of spectral sensitivity and quantitative exactness. Improved instrumentation has provided measurement of many vibrational modes in biological samples that previously were lost in noise. With highly optimized sampling conditions, useful measurements have been made with a peak-to-peak noise level less than 5 microabsorbance (5×10–6 absorbance), at 0.5 cm–1 resolution. However, optical and instrumental instabilities often result in sine waves that are not totally removed by the ratio of sample to reference. These often limit effective spectral sensitivity to 50 or 100 microabsorbance, peak-to-peak, and constitute a non-random noise. Non-atmospheric absorptions, especially one at 1959 cm–1 with 0.8 cm–1 band width (FWHM) are reported. The latter is due to a trace impurity in the KBr beam splitter substrate and compensator plate. Improvements in instrumentation and sampling conditions are expected to yield measurements of absorption bands as small as 50 microabsorbance with excellent signal/noise.  相似文献   
86.
New [CpM(Q)Cl] complexes (M = Rh or Ir, Cp = pentamethylcyclopentadienyl, HQ = 1-phenyl-3-methyl-4R(C=O)-pyrazol-5-one in general, in detail HQ(Me), R = CH(3); HQ(Et), R = CH(2)CH(3); HQ(Piv), R = CH(2)-C(CH(3))(3); HQ(Bn), R = CH(2)-(C(6)H(5)); HQ(S), R = CH-(C(6)H(5))(2)) have been synthesized from the reaction of [CpMCl(2)](2) with the sodium salt, NaQ, of the appropriate HQ proligand. Crystal structure determinations for a representative selection of these [CpM(Q)Cl] compounds show a pseudo-octahedral metal environment with the Q ligand bonded in the O,O'-chelating form. In each case, two enantiomers (S(M)) and (R(M)) arise, differing only in the metal chirality. The reaction of [CpRh(Q(Bn))Cl] with MgCH(3)Br produces only halide exchange with the formation of [CpRh(Q(Bn))Br]. The [CpRh(Q)Cl] complexes react with PPh(3) in dichloromethane yielding the adducts CpRh(Q)Cl/PPh(3) (1:1) which exist in solution in two different isomeric forms. The interaction of [CpRh(Q(Me))Cl] with AgNO(3) in MeCN allows generation of [CpRh(Q(Me))(MeCN)]NO(3).3H(2)O, whereas the reaction of [CpRh(Q(Me))Cl] with AgClO(4) in the same solvent yields both [CpRh(Q(Me))(H(2)O)]ClO(4) and [CpRh(Cl)(H(2)O)(2)]ClO(4); the H(2)O molecules derive from the not-rigorously anhydrous solvents or silver salts.  相似文献   
87.
The acid–base chemistry of some ruthenium ethyne-1,2-diyl complexes, [{Ru(CO)2(η-C5H4R)}22-CC)] (R=H, Me) has been investigated. Initial protonation of [{Ru(CO)2{η-C5H4R}}22-CC)] gave the unexpected complex cation, crystallised as the BF4 salt, [{Ru(CO)2(η-C5H4R}}33-CC)][BF4] (R=Me structurally characterised). This synthesis proved to be unreliable but subsequent, careful protonation experiments gave excellent yields of the protonated ethyne-1,2-diyl complexes, [{Ru(CO)2{η-C5H4R)}2212-CCH)](BF4) (R=Me structurally characterised) which could be deprotonated in high yield to return the starting ethyne-1,2-diyl complexes.  相似文献   
88.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   
89.
The first and second molal dissociation quotients of succinic acid were measured potentiometrically with a hydrogen-electrode, concentration cell. These measurements were carried out from 0 to 225°C over 25° intervals at five ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The dissociation quotients from this and two other studies were combined and treated with empirical equations to yield the following thermodynamic quantities for the first acid dissociation equilibrium at 25°C: log K1a=–4.210±0.003; H 1a 0 =2.9±0.2 kJ-mol–1; S 1a 0 =–71±1 J-mol–1-K–1; and C p1a 0 =–98±3 J-mol–1-K–1; and for the second acid dissociation equilibrium at 25°C: log K2a=–5.638±0.001; H 2a 0 = –0.5±0.1 kJ-mol–1; S 2a 0 =–109.7±0.4 J-mol–1-K–1; and C p2a 0 = –215±8 J-mol–1-K–1.  相似文献   
90.
The reactions between Ru5( 5-C2PPh2)(gm-PPh2(CO)13 (1) and cyclopentadienes afforded the hexanuclear clusters Ru6( 6-C)( 3-PPh2)2(CO)10(-C5 R 5) [R 5 = H5 (2), H4Me (3), Me5 (4)] which contain an encapsulated carbide and a face-capping 3-CH group, formed by cleavage of CC and CP bonds of the C2PPh2 moiety in1. In the reaction with cyclopentadiene, the unusual ligand C13H12O, formed by combination of C2, CO and two molecules of C5H6 (or one molecule of dicyclopentadien), was characterized in the complex Ru5( 4-PPh) ( 4-C13H12O)(-PPh2(CO)11(-C5H5) (5). In the reaction with pentamethylcyclopentadiene, the vinylidene complex Ru5( 3-CCHPh)( 4-PPh)( 4-PPh) (-PPh2)(CO)9(-C5Me5) (6) was also formed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号