首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737154篇
  免费   5356篇
  国内免费   1885篇
化学   348758篇
晶体学   10237篇
力学   41808篇
综合类   19篇
数学   125396篇
物理学   218177篇
  2021年   6212篇
  2020年   6719篇
  2019年   7688篇
  2018年   20112篇
  2017年   20025篇
  2016年   20192篇
  2015年   8467篇
  2014年   13552篇
  2013年   29337篇
  2012年   26197篇
  2011年   36432篇
  2010年   25779篇
  2009年   26121篇
  2008年   31626篇
  2007年   33339篇
  2006年   23465篇
  2005年   21864篇
  2004年   20715篇
  2003年   19382篇
  2002年   18438篇
  2001年   18414篇
  2000年   14439篇
  1999年   11109篇
  1998年   9891篇
  1997年   9639篇
  1996年   9065篇
  1995年   8039篇
  1994年   8087篇
  1993年   7893篇
  1992年   8157篇
  1991年   8712篇
  1990年   8419篇
  1989年   8321篇
  1988年   8026篇
  1987年   7872篇
  1986年   7457篇
  1985年   9351篇
  1984年   9873篇
  1983年   8327篇
  1982年   8684篇
  1981年   8124篇
  1980年   7667篇
  1979年   8422篇
  1978年   8617篇
  1977年   8645篇
  1976年   8642篇
  1975年   8244篇
  1974年   8053篇
  1973年   8294篇
  1972年   6365篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
91.
Copolymers of monomers 2,4‐dichlorophenyl methacrylate (2,4‐DMA) and methyl methacrylate (MMA) were synthesized with different monomer feed ratios using toluene as a solvent and 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70 °C. The copolymers were characterized by IR‐spectroscopy, and copolymer composition was determined with UV‐spectroscopy. The linearization method of Fineman–Ross was employed to obtain the monomer reactivity ratios. The molecular weights and polydispersity indexes were determined by gel permeation chromatography (GPC). Thermogravimetric analyses of polymers were carried out in nitrogen atmosphere. The homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5227–5234, 2004  相似文献   
92.
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004  相似文献   
93.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
94.
95.
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004  相似文献   
96.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
97.
Atomic force microscopy (AFM) has been used to visualize the plastic deformation mechanisms that are responsible for the yielding of semicrystalline polymers of low degree of crystallinity (<50%). Indeed, AFM, if operated in suitable conditions, is able to image both the amorphous and the crystalline phases. Polyamide 6 films have been drawn at temperatures T < 160 °C. Postmortem AFM observations show that, at yield, shear bands nucleate and propagate in the amorphous phase. They cross the crystalline lamellae and run over the whole surface of the sample. By crossing the lamellae, they form nanoblocks of uniform size. Neither the size of the nanoblocks nor the angle between the tensile axis and the shear bands can be explained in terms of crystal plasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 687–701, 2004  相似文献   
98.
99.
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004  相似文献   
100.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号