排序方式: 共有75条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
基于第一性原理密度泛函理论计算了LiFePO4和LiFe1-xMoxPO4(x=0.005,0.01,0.015,0.02,和0.025)的电子结构和锂离子扩散能垒。结果显示掺杂后的LiFe0.99Mo0.01PO4样品具有最大的(101)晶面间距,由此可知LiFe0.99Mo0.01PO4沿[101]晶向具有最宽的锂离子扩散通道。未掺杂的LiFePO4的锂离子扩散能垒为4.289eV,而掺杂后LiFe0.99Mo0.01PO4降为4.274eV,经过计算得出掺杂样品LiFe0.99Mo0.01PO4的锂离子扩散系数增为未掺杂LiFePO4的1.79倍,表明Mo掺杂有利于改善LiFePO4的锂离子扩散能力。态密度图显示,掺杂Mo后导带底附近的峰强度增强,对LiFePO4电子导电性能的提高是有利的。因此,掺杂Mo有益于提高LiFePO4的锂离子扩散能力和电子导电能力。结合我们的实验结果比较得知,在磷酸铁锂性能的改善上,相比电子导电能力,锂离子扩散能力的提高起到了更重要的作用。 相似文献
75.
采用UHF, CIS和CASSCF方法, 在aug-cc-pvdz基组水平上对CH2=CClF hν >•CH=CClF+H的光解反应通道及其后续反应作了研究. 计算表明: 分子吸收一个光子后, 在第一电子激发态(S1)经过一个过渡态解离与Cl原子同侧的C—H键, 这与用CIS方法计算垂直激发得到的π→σ*C—H跃迁及其对Frank-Condon点的计算中分子的单占轨道和键电荷密度变化所预测的结果是一致的. 光解产物•CH=CClF(基态)还可再发生反应, 经过渡态解离C—Cl键或是C—F键. 相似文献