首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   65篇
  国内免费   26篇
化学   49篇
晶体学   25篇
力学   23篇
综合类   1篇
数学   11篇
物理学   147篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   20篇
  2018年   14篇
  2017年   18篇
  2016年   17篇
  2015年   10篇
  2014年   32篇
  2013年   10篇
  2012年   14篇
  2011年   10篇
  2010年   15篇
  2009年   19篇
  2008年   8篇
  2007年   13篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  1999年   5篇
  1995年   1篇
  1994年   3篇
排序方式: 共有256条查询结果,搜索用时 234 毫秒
231.
土壤元素的丰缺是对土壤养分检测、农业按需种植和科学施肥的依据,是精准农业农情信息感知技术检测的关键点,更为农业生态、高效和优质生产提供理论指导。该研究运用激光诱导击穿光谱(LIBS)技术结合定标曲线法和偏最小二乘回归(PLSR)方法对土壤中的Al,Fe,Mg,Ca,Na和K多种元素同时进行定量分析。利用LIBS检测仪获取了五种标准土壤样品(国家编号: GBW07446,GBW07447,GBW07454,GBW07455和GBW07456)的LIBS数据之后,将每种土壤的多条谱线平均处理来消除试验误差。通过分析所获取的土壤LIBS谱线信息,选取了Al,Fe,Mg,Ca,Na和K元素的特征分析谱线和分析光谱区间,并利用谱线的峰值信息和分析光谱区间内的单个或多个谱峰的积分信息(峰面积)与对应元素浓度拟合并建立定标曲线。结果表明,基于谱峰的峰面积建立的定标曲线的线性关系优于利用峰值信息建立的定标曲线(Fe除外)。同时,针对所选的分析光谱区间和元素的浓度信息,运用PLSR建立定量分析模型,其结果明显要优于定标曲线的分析精度,这也表明LIBS技术结合化学计量学分析在未来光谱化学分析领域有很大应用前景。研究的结果不仅为现代农业的土壤养分空间分布检测和农田精准施肥技术的应用起指导作用,还为田间使用的便携式LIBS土壤检测仪的开发奠定了理论基础。  相似文献   
232.
温度波动影响含氢基团之间的作用力,从而影响近红外光谱的吸收强度和波峰位置等,导致近红外测量精度的降低。针对温度变化对近红外光谱建模精度的影响,对全局隐含温度补偿方法进行了研究,并对其预测精度进行了分析,分别从预测方差和置信区间两个方面对此类模型的精度进行了理论探讨和验证。同时通过温度的连续变化实验,即在温度连续变化的过程中,等时间间隔采集各样品的近红外光谱,研究了温度变化对光谱主元的连续模式影响,探讨了温度变化影响模型预测精度的方式和途径。最后对某高分子聚合物的粘度测量问题进行了实验验证和误差分析,得到标准温度下所建未经温度补偿的模型和全局隐含温度补偿模型的建模精度分别为:RMSEC=0.243 0, Rc=0.871 6, RMSEP=0.243 2, Rp=0.869 3; RMSEC=0.258 2, Rc=0.870 6, RMSEP=0.265 2, Rp=0.856 0,而当温度变化时,二者预测最大置信区间分别约为1.8和0.9 kPa·s。虽然全局隐含温度补偿模型相比于标准温度模型建模精度略降低,但预测精度提高了一倍左右。理论分析和实验结果均表明,全局温度补偿模型具有较高的预测精度,且对温度的变化有较强的鲁棒性和可靠性。  相似文献   
233.
提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030 nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶片感兴趣区域(region of interest, ROI)的光谱反射率值,同时分别从前8个主成分的每幅主成分图像的ROI中提取对比度(Contrast)、 相关性(Correlation)、 熵(Entropy)和同质性(Homogeneity)4个灰度共生矩阵的纹理特征值,再通过PCA和连续投影算法(SPA)结合最小二乘支持向量机(LS-SVM)构建番茄叶片早疫病的早期鉴别模型。建立的6个模型中,采用光谱反射率值的LS-SVM模型对番茄叶片早疫病的识别率最高,达到100%。结果表明,应用高光谱成像技术检测番茄叶片早疫病是可行的。  相似文献   
234.
提出一种求解波导结构频散特性的有限元特征频率法,该方法基于振动问题的特征频率计算理论,根据模态振型识别波数与模态类型,建立了相速度及群速度的求解方法。该方法可适用于任意波导结构的频散关系求解。首先分析满足收敛精度要求的最大网格单元尺寸与最小模型长度,并用该方法对简支板条结构的频散特性进行了计算。结果表明,有限元特征频率法适合求解波动频散关系,板条结构中模态受边界影响会产生同阶高次模态,边界尺寸决定新模态的截止频率;随频率的增大,同阶低次反对称模态会趋于一致;对称模态能量分布受边界影响较大。本文也为板条类结构导波实验结果的分析提供了理论依据。  相似文献   
235.
三维串列双圆柱绕流气动流场及声场模拟   总被引:2,自引:0,他引:2  
数值模拟三维串列双圆柱在不同间距比下湍流流态及其辐射声场.采用大涡模拟(LES)求解非定常不可压缩Navier-Stokes方程得到瞬时流场数据,从而得到声源相关数据,求解基于FW-H积分方程的Farassat-1A方程计算载荷噪声得到相应声场分布.通过对不同间距比下相应的声场及观测点的声压频谱图进行比较可以发现:随着间距的变化,流场呈现出3种不同的流态,其声场也呈现不同的特点,在临界间距比下,总噪声值最大.  相似文献   
236.
肖松  蔡九菊  刘飞  刘明哲 《中国物理 B》2010,19(9):90202-090202
In this paper, the effects of unequal injection rates and different hopping rates on the asymmetric simple exclusion process (ASEP) with a 2-input 1-output junction are studied by using a simple mean-field approach and extensive computer simulations. The steady-state particle currents, the density profiles, and the phase diagrams are obtained. It is shown that with unequal injection rates and different hopping rates, the phase diagram structure is qualitatively changed. The theoretical calculations are in good agreement with Monte Carlo simulations.  相似文献   
237.
当近红外光谱信息远远大于样本量时,对光谱信息进行自动变量选择进而建立光谱与微量成分含量之间的稀疏线性模型重要且具有挑战性。针对聚苯醚生产过程中微量成分邻甲酚难以测量的问题,将变量选择方法Adaptive Elastic Net用于建立近红外光谱与邻甲酚含量之间的定量校正模型,并将其模型性能与ElasticNet方法进行对比。在变量数目远远大于样本量的情形下,ElasticNet方法虽可以实现变量选择,但由于其系数估计不具备Oracle性质,使得模型的可解释性和预测精度受到影响,而Adaptive Elastic Net方法通过对L1惩罚项施加自适应权重从而很好的解决了上述问题并提高了模型性能。为了验证Adaptive Elastic Net方法的模型性能指标,用最终被选中的自变量数目来评价模型复杂度;利用复相关系数R2来评价模型的可解释性,利用平均相对预测误差MRPE(mean relative prediction error)和预测相关系数Rp来评价模型的预测精度。Elastic Net方法建立的模型性能指标为:NSIV=529,R2=0.96, MRPE=3.22%, Rp=0.97; Adaptive Elastic Net方法的性能指标为:NSIV=139, R2=0.99, MRPE=2.00%, Rp=0.99。结果表明:Adaptive Elastic Net所建立模型的性能指标优于Elastic Net方法,可以得到更加简单且具有较强可解释性和较高预测精度的稀疏线性模型。  相似文献   
238.
应用带保护气进行烧结的方法,制作了一种双半导体底层碳纳米管薄膜阴极.利用烧结的银浆形成条形银电极,在条形银电极表面制作了具有相同宽度且平行排列的ZnO掺杂底层和TiO2掺杂底层,在掺杂底层上面制备了碳纳米管膜层.由于保护气的防氧化屏蔽,碳纳米管膜层中的碳纳米管未受损害,ZnO粒子和TiO2粒子也在烧结过程中得到了很好地保护,双半导体底层碳纳米管薄膜阴极获得更优的电子发射特性,且电子发射稳定性也得到有效增强.与普通条形银电极碳纳米管阴极相比,双半导体底层碳纳米管薄膜阴极能够将开启电场从2.09V/μm降低到1.91V/μm,将最大电子发射电流从1 653.5μA提高到2 672.9μA.在2.69V/μm电场作用下,普通条形银电极碳纳米管阴极的电子发射电流仅为421.1μA,而双半导体底层碳纳米管薄膜阴极的电子发射电流能够达到723.5μA.从发射电流稳定性实验曲线可以看出,双半导体底层碳纳米管薄膜阴极实现了稳定的电子发射,表明ZnO掺杂底层和TiO2掺杂底层能够应用于真空环境.利用数码相机获得了具有良好质量的发射图像,验证了双半导体底层碳纳米管薄膜阴极制作的可行性和适用性.  相似文献   
239.
作物的生物含量与作物的光学特性有直接的关系,而植物叶片的双向反射分布函数(BRDF)又直接影响植物的光学特性。植物叶片的BRDF体现了叶片在各个方向不同的能量反射能力,直接影响植物叶片的光谱检测结果,也是植被冠层宏观光学特征的影响因素之一。对植物叶片的BRDF光学特性及表现出的规律性展开研究和讨论,能够有效提高植物无损检测光谱模型的稳定性和可靠性,提升利用作物光谱模型反演理化特性的准确性和可靠性。首先介绍了植物叶片的BRDF快速获取方法及自主研发的方向性光谱检测仪器,该仪器能够在入射光的方位角和天顶角、接收探头的方位角和天顶角这四个维度进行调整,实现多入射角和反射角的反射光谱数据采集。单子叶植物的叶脉呈纵向分布,因而体现出较为显著的各向异性,玉米和小麦是两种较为典型的单子叶农作物。通过自主研发仪器获取不同波段范围下的玉米和小麦的反射光谱信息,并分析总结其反射分布规律。采用文中所介绍的BRDF计算方法对光谱数据以及白板校正数据进行计算,再结合MATLAB程序对光谱反射数据的图像映射,对反射结果与叶绿素含量和叶片含水量这两个叶片典型理化参数的相关性进行分析,最后探讨了采用ANIX系数对叶片的各向异性进行量化分析的方法。选取小麦在可见光波段以及玉米在近红外波段的数据,结果表明,小麦和玉米在各波段下的fr分布均关于入射天顶角两侧微小空间对称,在相同波段下,不同入射天顶角下的fr值大小基本一致;在相同入射天顶角下,小麦在800 nm波段下的fr值最大,680 nm波段下的fr值最小,这是由于680 nm波长附近是叶绿素强吸收的特征波段,而800 nm附近是叶绿素反射的特征波段,且在相同波段下,叶绿素浓度的升高会导致fr值的增大;在水的强吸收特征波段1 450 nm下,玉米的fr值随着含水量的升高而增长。分析表明,作物的BRDF特性能够有效反映叶片主要生物含量的变化,同时计算所得到的各向异性指数也体现出一致的变化规律,为建立稳定且可靠的作物光谱定量分析模型提供了理论和实践基础。  相似文献   
240.
近红外光谱分析在工业过程故障检测方面具有独特的优势,是一种准确且高效的方法。结合互信息熵和传统的主成分分析,对近红外光谱特征信息进行提取,通过构建过程的模式来刻画工业过程的运行状态。利用近红外光谱数据,从有机分子含氢基团振动信息中获取工业系统的过程模式,从微观分子层面探索提高工业过程故障检测准确率的有效方法,结合贝叶斯统计学习技术,提出了基于近红外光谱数据的工业过程故障检测技术。针对近红外光谱信息量丰富,谱带较宽,特征性不强的特点,首先对工业过程不同运行状态下的近红外光谱吸光度数据进行一阶导数预处理,采用主成分分析法(principal component analysis,PCA)压缩光谱数据量,扩大不同运行状态下光谱特征信息的差异性,提取光谱的内部特征信息。然后采用互信息熵(mutual information entropy,MIE)作为光谱特征信息相关性度量函数,基于最小冗余最大相关算法进一步减少光谱特征信息间的冗余并最大化光谱特征信息与类别的相关性,弥补了PCA无监督特征波长选择的不足,提出一种基于PCA-MIE的过程模式构建方法,获得的过程模式子集更紧凑更具类别表现力。再利用贝叶斯统计学习算法,根据后验概率对构建的模式子集进行决策,判别生产过程的正常状态和故障状态。由于过程模式子集结合了PCA浓聚方差的优势和互信息熵相关性测度的特征信息选择方法,蕴含了更多的近红外光谱的本质信息与内在规律,从而更能刻画工业过程的运行状态。接着,设置测试准确率TA作为评估标准,用以评价故障检测方法的性能效果。最后利用某化工厂提供的原油脱盐脱水过程近红外光谱数据对所提方法进行验证,并与传统近红外光谱特征信息提取方法PCA和MIE方法性能进行对比分析,结果表明基于PCA-MIE的过程模式故障检测方法几乎在所有维数子集上性能都优于其他两种方法,在特征维数为18维时获得最高的准确率94. 6%,证明了方法的优越性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号