首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24985篇
  免费   457篇
  国内免费   99篇
化学   13940篇
晶体学   152篇
力学   758篇
综合类   9篇
数学   3438篇
物理学   7244篇
  2023年   116篇
  2022年   315篇
  2021年   393篇
  2020年   360篇
  2019年   316篇
  2018年   404篇
  2017年   362篇
  2016年   625篇
  2015年   515篇
  2014年   596篇
  2013年   965篇
  2012年   1255篇
  2011年   1424篇
  2010年   803篇
  2009年   760篇
  2008年   1197篇
  2007年   1184篇
  2006年   1066篇
  2005年   1495篇
  2004年   1526篇
  2003年   1077篇
  2002年   714篇
  2001年   598篇
  2000年   554篇
  1999年   344篇
  1998年   290篇
  1997年   288篇
  1996年   356篇
  1995年   314篇
  1994年   306篇
  1993年   327篇
  1992年   319篇
  1991年   264篇
  1990年   215篇
  1989年   203篇
  1988年   179篇
  1987年   175篇
  1986年   173篇
  1985年   224篇
  1984年   213篇
  1983年   184篇
  1982年   186篇
  1981年   183篇
  1980年   169篇
  1979年   151篇
  1978年   178篇
  1977年   138篇
  1976年   135篇
  1974年   132篇
  1973年   122篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melting of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.  相似文献   
992.
Structural disorder at the scale of two to three atomic positions around the probe nucleus results in variations of the EFG and thus in a distribution of the quadrupolar interaction. This distribution is at the origin of the lineshape tailing toward high fields which is often observed in the MAS NMR spectra of quadrupolar nuclei in disordered solids. The Czjzek model provides an analytical expression for the joint distribution of the NMR quadrupolar parameters upsilon(Q) and eta from which a lineshape can be predicted. This model is derived from the Central Limit Theorem and the statistical isotropy inherent to disorder. It is thus applicable to a wide range of materials as we have illustrated for 27Al spectra on selected examples of glasses (slag), spinels (alumina), and hydrates (cement aluminum hydrates). In particular, when relevant, the use of the Czjzek model allows a quantitative decomposition of the spectra and an accurate extraction of the second moment of the quadrupolar product. In this respect, it is important to realize that only rotational invariants such as the quadrupolar product can make sense to describe the quadrupolar interaction in disordered solids.  相似文献   
993.
We have recently shown that irradiation of self-standing films of the biopolymers collagen and gelatine with single femtosecond laser pulses produces a nanofoaming layer with regular bubble size which can be controlled by wavelength selection. Following these initial studies, here we report on the temporal evolution of the foaming effect by measurements in situ and in real time of the change in the transmittance of a cw probe HeNe laser through the irradiated films. Self standing films of the biopolymers were irradiated with 90 fs laser pulses at 800, 400, and 266 nm. For fluences below and above the modification threshold a permanent attenuation of the transmission occurs (increasing with fluence). The initial decay of the transmission is fast (around few tens of ns), and is followed by dynamics in the longer timescale (micro and milliseconds). The temporal evolution of the transmission measured upon fs laser irradiation is similar with that determined in the irradiation of the biopolymer films at 248 nm with 25 ns laser pulses. The method allows separating in time the different processes occurring after irradiation that lead to a permanent nanofoaming structure, while the results allow us to understand the mechanisms of femtosecond laser processing of the biopolymers and their interest in biomedical applications.  相似文献   
994.
Results on high radiance Yb3+-doped fiber lasers with novel double innerclad structures (double-D clad and four hole) and polarized output at ≈1090 nm are presented. We have demonstrated >40% of the total output power being polarized, making the fiber laser suitable for LIDAR and second-harmonic generation (SHG) applications. It also showed a 10-nm tuning range with low (less than 10 mW) average power variations. The narrow linewidth source was pumped with a low cost, low brightness laser diode, and exhibited a relatively low slope efficiency, which gives room for improvement by using a 976-nm pump source where Yb3+ has a narrower linewidth and at least five times higher absorption.  相似文献   
995.
It has been suggested (by Pessina et al. in 1997) that the observed spontaneous mode beating of erbium-doped-fiber ring lasers can be explained as the multimode instability described in 1968 by Risken and Nummedal and by Graham and Haken (the RNGH instability), which is based on Rabi-splitting-induced gain. If true, this would constitute the first ever example of this instability in an actual experiment. We test the hypothesis through a quantitative experimental investigation. We demonstrate that there is indeed a clear, marked onset of the instability, a fact that went unnoticed in all previous experiments because it is very close to the lasing threshold. We intentionally raise cavity loss to better separate onset of lasing and of instability. We obtain quantitative information on the instability onset. An interpretation as the predicted second threshold is reasonable provided inhomogeneous gain line broadening is taken into account. We also observe that instability above its onset exists only intermittently; this may hint at a subcritical bifurcation and noise-driven transitions. In any event, the RNGH mechanism is present, if not in a pure form. PACS 42.65.Sf; 42.60.Mi; 42.55.Wd  相似文献   
996.
A decay spectroscopy study of the neutron-rich cobalt isotopes has been performed using fragmentation of a 86Kr36+ beam and the new LISE2000 spectrometer at GANIL. For 71Co and 73Co, the -delayed radiation has been observed for the first time, and the half-lives were found to be 79(5) ms and 41(4) ms, respectively. Features of the decay are discussed qualitatively in terms of nuclear models.  相似文献   
997.
This article reports on the microstructure characterization of titanium dioxide nanodispersions and thin films made thereof for dye-sensitized solar cell devices. Structure–property relationships have been investigated mainly using electron microscopy to assess how microstructure (crystalline structure, defects) and morphological (e.g. heterogeneities, inclusions, voids) features in the electron transport element of the solar cell device correlate with electrical performance, namely, short-circuit photocurrent density (Jsc). This work shows that for a nanodispersion synthesized in the laboratory different electrical performances are measurable depending on the thin film forming process, more specifically, heat-sintering at 450 °C or pressure-sintering at 500 bar. For the heat-sintered device Jsc is about 7.3 mA/cm2 whereas for the pressure-sintered one this value is much lower, this difference being attributed to the existence of inclusions in the titanium dioxide matrix, which are spatially isolated from the rest of the electron transport element thereby limiting the charge transport process by promoting their premature recombination. PACS 68.37.Lp; 73.61.Le; 81.40.-z; 84.60.Jt  相似文献   
998.
Mutual mass diffusion and thermal diffusion has been investigated in poly(dimethylsiloxane)/ poly(ethylmethylsiloxane) (PDMS/PEMS) polymer blends of equal weight fractions. Molar masses ranged from below 1 to over 20 kg/mol. Both the mutual mass (D) and the thermal diffusion (DT) coefficient contain a thermally activated factor with an activation temperature of 1415 K. The molar mass dependence of DT is due to an end-group effect of the local friction coefficient. The thermal diffusion coefficient in the limit of long chains and infinite temperature is DT0, = - 1.69×10-7cm2(sK)-1. The Soret coefficient ST of blends far enough away from a critical point is proportional to the static structure factor S(q = 0).  相似文献   
999.
1000.
We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.Received: 7 January 2003, Revised: 4 November 2003, Published online: 15 April 2004PACS: 12.39.Ki Relativistic quark model - 13.40.Gp Electromagnetic form factors - 14.20.Dh Protons and neutrons - 14.20.Jn Hyperons  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号