首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   0篇
化学   61篇
晶体学   2篇
数学   6篇
物理学   18篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2014年   6篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   3篇
  1988年   1篇
  1985年   2篇
  1983年   3篇
  1980年   5篇
  1973年   1篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1933年   2篇
  1931年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
81.
Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.  相似文献   
82.
To expedite an SAR study of the C2 position of a highly substituted benzofuran ring system, we developed a method for the preparation of a key precursor, iodide 10. From iodide 10, a diverse set of compounds with different substituents at the C2 position were prepared efficiently.  相似文献   
83.
For detection of low concentrations of analytes in complex biological matrices using optical biosensors, a high surface loading with capture molecules and a low nonspecific binding of nonrelevant matrix molecules are essential. To tailor biosensor surfaces in such a manner, poly(ethylene glycols) (PEG) in varying lengths were immobilised covalently onto glass-type surfaces in different mixing ratios and concentrations, and were subsequently modified with three different kinds of receptors. The nonspecific binding of a model protein (ovalbumin, OVA) and the maximum loading of the respective analytes to these prepared surfaces were monitored using label-free and time-resolved reflectometric interference spectroscopy (RIfS). The three different analytes used varied in size: 150 kDa for the anti-atrazine antibody, 60 kDa for streptavidin and 5 kDa for the 15-bp oligonucleotide. We investigated if the mixing of PEG in different lengths could increase the surface loadings of analyte mimicking a three-dimensional matrix as was found using dextrans as sensor coatings. In addition, the effect on the surface loading was investigated with regard to the size of the analyte molecule using such mixed PEGs on the sensor surface. For further characterisation of the surface coatings, polarisation modulation infrared reflection absorption spectroscopy, atomic force microscopy, and ellipsometry were applied. All authors contributed equally to this work.  相似文献   
84.
We present incoherent quasi-elastic neutron scattering measurements in a wave vector transfer range from 0.4 A?(-1) to 1.6A? (-1) on liquid n-hexane confined in cylindrical, parallel-aligned nanochannels of 6 nm mean diameter and 260 μm length in monolithic, mesoporous silicon. They are complemented with, and compared to, measurements on the bulk system in a temperature range from 50 K to 250 K. The time-of-flight spectra of the bulk liquid (BL) can be modeled by microscopic translational as well as fast localized rotational, thermally excited, stochastic motions of the molecules. In the nano-confined state of the liquid, which was prepared by vapor condensation, we find two molecular populations with distinct dynamics, a fraction which is immobile on the time scale of 1 ps to 100 ps probed in our experiments and a second component with a self-diffusion dynamics slightly slower than observed for the bulk liquid. No hints of an anisotropy of the translational diffusion with regard to the orientation of the channels' long axes have been found. The immobile fraction amounts to about 5% at 250 K, gradually increases upon cooling and exhibits an abrupt increase at 160 K (20 K below bulk crystallization), which indicates pore freezing.  相似文献   
85.
Electronic structure studies of tetrazolium-based ionic liquids   总被引:1,自引:0,他引:1  
New energetic ionic liquids are investigated as potential high energy density materials. Ionic liquids are composed of large, charge-diffuse cations, coupled with various (usually oxygen containing) anions. In this work, calculations have been performed on the tetrazolium cation with a variety of substituents. Density functional theory (DFT) with the B3LYP functional, using the 6-311G(d,p) basis set was used to optimize geometries. Improved treatment of dynamic electron correlation was obtained using second-order perturbation theory (MP2). Heats of formation of the cation with different substituent groups were calculated using isodesmic reactions and Gaussian-2 calculations on the reactants. The cation was paired with oxygen rich anions ClO4-, NO3-, or N(NO2)2- and those structures were optimized using both DFT and MP2. The reaction pathway for proton transfer from the cation to the anion was investigated.  相似文献   
86.
This paper describes the synthesis of narrowly distributed block copolymers consisting of a hole conducting triarylamine block and an anchor block via RAFT polymerization. The anchor block is thereby introduced via a reactive ester approach. Block copolymers with dopamine anchor groups bind to oxidic semiconductors like TiO2, SnO2, and ZnO. Thus, it becomes possible to cover inorganic electron conducting (acceptor) nanomaterials with a corona of an organic hole conducting (donor) polymer like poly(triphenylamine), giving new hybrid materials. The poly(triphenylamine) grafted to inorganic nanorods allows the preparation of stable nanorod dispersions in appropriate solvents. At higher concentration the nanorods form liquid crystalline phases in various solvents and in a low Tg oligotriphenylamine matrix. This offers the potential to orient semiconducting inorganic nanorods in a hole conducting polymer matrix by self‐assembly.

  相似文献   

87.
The glassy dynamics of poly(propylene glycol) (PPG) and poly(methyl phenyl siloxane) (PMPS) confined to nanoporous glasses (pore sizes 2.5–20 nm) investigated by dielectric spectroscopy, temperature modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature modulated DSC agree quantitatively indicating that both experiments sense the glass transition.For PPG the glassy dynamics in nanopores is determined by a counterbalance of an adsorption and a confinement effect where the temperature dependence of the relaxation times obeys the Vogel/Fulcher/Tammann (VFT-) equation. The former effect results from an interaction of the confined macromolecules with the internal surfaces which in general slows down the molecular dynamics. A confinement effect leads to an acceleration of the segmental dynamics compared to the bulk state and points to an inherent length scale on which the glassy dynamics takes place. The step of the specific heat capacity cp at the glass transition vanishes at a finite length scale of 1.8 nm. This result supports further the conception that a characteristic length scale is relevant for glassy dynamics.For PMPS down to a pore size of 7.5 nm the temperature dependence of the relaxation times follows the VFT-dependence and a confinement effect is observed like for PPG. At a pore size of 5 nm this changes to an Arrhenius-like behavior with a low activation energy. At the same pore size cp vanishes for PMPS. This points to a dramatic change in the character of molecular motions responsible for glassy dynamics and supports further the relevance of a characteristic length scale on which it takes place.Quasielastic neutron scattering experiments on PMPS reveal that the microscopic dynamics characterized by the mean square displacement depends on confinement above the glass transition. The diffusive character of the relevant molecular motions seems to disappear at a length scale of about 1.6 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号