首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   3篇
  国内免费   2篇
化学   68篇
晶体学   1篇
数学   8篇
物理学   22篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   10篇
  2010年   3篇
  2009年   1篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有99条查询结果,搜索用时 140 毫秒
31.
Tertiary 1,1-dimethyl-4-alkenyl chloride (1) solvolyzes with significantly reduced secondary beta-deuterium kinetic isotope effect (substrate with two trideuteromethyl groups) and has a lower entropy and enthalpy of activation than the referent saturated analogue 4 (k(H)/k(D) = 1.30 +/- 0.03 vs k(H)/k(D) = 1.79 +/- 0.01; Delta Delta H(++) = -9 kJ mol(-1), Delta Delta S(++) = -36 J mol(-1) K(-1), in 80% v/v aqueous ethanol), indicating participation of the double bond in the rate-determining step. Transition structure 1-TS computed at the MP2(fc)/6-31G(d) level of theory revealed that the reaction proceeds through a late transition state with considerably pronounced double bond participation and a substantially cleaved C-Cl bond. The doubly unsaturated compound 3 (1,1-dimethyl-4,8-alkadienyl chloride) solvolyzes with further reduction of the isotope effect, and a drastically lower entropy of activation (k(H)/k(D) = 1.14 +/- 0.01; DeltaS(++) = -152 +/- 12 J mol(-1) K(-1), in 80% v/v aqueous ethanol), suggesting that the solvolysis of 3 proceeds by way of extended pi-participation, i.e., the assistance of both double bonds in the rate-determining step.  相似文献   
32.
Condensation of tetra-O-pivaloyl-α-d-glucopy-ranosyl bromide (1) with three heterocyclic oximes: 3-hydroxyiminoquinuclidine (2), 4-hydroxyiminomethyl-pyridine (3) and N-methyl-2-hydroxyiminomethylimidazole (4) leads to the β-N-glucoconjugates. Conjugates 6 and 7 were synthesized using aromatic compounds 3 and 4 as the starting material. They were obtained in two isomeric forms (E and Z) due to the restricted rotation around the oxime's double bond. The presence of E and Z isomers was proved by comparison of NMR spectra with calculated GIAO/DFT NMR spectra on B3LYP/6-31G(d) level of theory and by X-ray structural analysis of starting oxime reagents. Isomery was not observed in the quinuclidinium glucoconjugate 5.  相似文献   
33.
34.
Although the application of organic solvents in biocatalysis is well explored, in-depth understanding of the interactions of solvent with proteins, in particular oligomeric ones, is still scant. Understanding these interactions is essential in tailoring enzymes for industrially relevant catalysis in nonaqueous media. In our study, the homotetrameric enzyme halohydrin dehalogenase (HHDH) from Agrobacterium radiobacter AD1 (HheC) was investigated, as a model system, in DMSO/water solvent mixtures. DMSO, the most commonly used co-solvent for biocatalytic transformations, was found to act as a mixed-type inhibitor with a prevalent competitive contribution. Even 5 % (v/v) DMSO inhibits the activity of HheC by half. Molecular dynamics (MD) simulations showed that DMSO keeps close to Ser-Tyr catalytic residues forming alternate H-bonds with them. Stability measurements paired with differential scanning calorimetry, dynamic light scattering methods and MD studies revealed that HheC maintains its structural integrity with as much as 30 % (v/v) DMSO.  相似文献   
35.
We address the question of whether superfluidity can survive in the case of fermion pairing between different species with mismatched Fermi surfaces using as an example a population-imbalanced mixture of 6Li atomic Fermi gas loaded in a two-dimensional optical lattice at nonzero temperatures. The collective mode is calculated from the Bethe-Salpeter equations in the general random phase approximation assuming a Fulde-Ferrell order parameter. The numerical solution shows that, in addition to low-energy (Goldstone) mode, two rotonlike minima exist, and therefore, the superfluidity can survive in this imbalanced system.  相似文献   
36.
CE methods have been developed for the chiral analysis of new types of six acyclic nucleoside phosphonates, nucleotide analogs bearing [(3‐hydroxypropan‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl]phosphonic acid, 2‐[(diisopropoxyphosphonyl)methoxy]propanoic acid, or 2?(phosphonomethoxy)propanoic acid moieties attached to adenine, guanine, 2,6‐diaminopurine, uracil, and 5‐bromouracil nucleobases, using neutral and cationic cyclodextrins as chiral selectors. With the exception of the 5‐bromouracil‐derived acyclic nucleoside phosphonate with a 2‐(phosphonomethoxy)propanoic acid side chain, the R and S enantiomers of the other five acyclic nucleoside phosphonates were successfully separated with sufficient resolutions, 1.51–2.94, within a reasonable time, 13–28 min, by CE in alkaline BGEs (50 mM sodium tetraborate adjusted with NaOH to pH 9.60, 9.85, and 10.30, respectively) containing 20 mg/mL β‐cyclodextrin as the chiral selector. A baseline separation of the R and S enantiomers of the 5‐bromouracil‐derived acyclic nucleoside phosphonate with 2‐(phosphonomethoxy)propanoic acid side chain was achieved within a short time of 7 min by CE in an acidic BGE (20:40 mM Tris/phosphate, pH 2.20) using 60 mg/mL quaternary ammonium β‐cyclodextrin chiral selector. The developed methods were applied for the assessment of the enantiomeric purity of the above acyclic nucleoside phosphonates. The preparations of all these compounds were found to be synthesized in pure enantiomeric forms. Using UV absorption detection at 206 nm, their concentration detection limits were in the low micromolar range.  相似文献   
37.
Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)‐enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β‐cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)‐enantiomers of ANPs‐based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0–25 mM) of βCD. The apparent binding constants of the complexes of (R,S)‐enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)‐enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)‐enantiomers of ANPs with βCD have been found to be relatively weak – their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3–46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3–55.2 L/mol.  相似文献   
38.
本文报道了氯化氢-水二聚体的两种同位素,HCl-H2O和DCl-H2O(DH)的J=1分子内和分子间振转态的全维和完全耦合量子束缚态计算. 本研究补充了我们最近对于这两类体系J=0九维(9D)振动水平结构的理论研究,并采用相同的精确9D置换不变多项式-神经网络势能面. 该计算得到了所有这些分子间和分子内低能的振转态的基本量,将结果与相同二聚体的9D J=0计算的结果进行了比较. K=1和K=0本征态之间的能量差异表现出与分子间振转态的明显变化,为此本文提供了定性的解释.  相似文献   
39.
The supramolecular complex, H2@C60, represents a model of a quantum rotor in a nearly spherical box. In providing a real example of a quantum particle entrapped in a small space, the system cuts to the heart of many important and fundamental quantum mechanical issues. This review compares the predictions of theory of the quantum behaviour of H2 incarcerated in C60 with the results of infrared spectroscopy, inelastic neutron scattering and nuclear magnetic resonance. For H2@C60, each of these methods supports the quantization of translational motion of H2 and the coupling of the translational motion with rotational motion and provides insights to the factors leading to breaking of the degeneracies of states expected for a purely spherical potential. Infrared spectroscopy and inelastic neutron scattering experiments at cryogenic temperatures provide direct evidence of a profound quantum mechanical feature of H2 predicted by Heisenberg based on the Pauli principle: the existence of two nuclear spin isomers, a nuclear spin singlet (para-H2) and a nuclear triplet (ortho-H2). Nuclear magnetic resonance is capable of probing the local lattice environment of H2@C60 through analysis of the H2 motional effects on the ortho-H2 spin dynamics (para-H2, the nuclear singlet state, is NMR silent). In this review we will show how the information obtained by three different forms of spectroscopy join together with quantum theory to create a complementary and consistent picture which strikingly shows the intrinsically quantum nature of H2@C60.  相似文献   
40.
We report rigorous quantum five-dimensional (5D) calculations of the coupled translation-rotation (T-R) eigenstates of a H(2) molecule adsorbed in metal organic framework-5 (MOF-5), a prototypical nanoporous material, which was treated as rigid. The anisotropic interactions between H(2) and MOF-5 were represented by the analytical 5D intermolecular potential energy surface (PES) used previously in the simulations of the thermodynamics of hydrogen sorption in this system [Belof et al., J. Phys. Chem. C 113, 9316 (2009)]. The global and local minima on this 5D PES correspond to all of the known binding sites of H(2) in MOF-5, three of which, α-, β-, and γ-sites are located on the inorganic cluster node of the framework, while two of them, the δ- and ε-sites, are on the phenylene link. In addition, 2D rotational PESs were calculated ab initio for each of these binding sites, keeping the center of mass of H(2) fixed at the respective equilibrium geometries; purely rotational energy levels of H(2) on these 2D PESs were computed by means of quantum 2D calculations. On the 5D PES, the three adjacent γ-sites lie just 1.1 meV above the minimum-energy α-site, and are separated from it by a very low barrier. These features allow extensive wave function delocalization of even the lowest translationally excited T-R eigenstates over the α- and γ-sites, presenting significant challenges for both the quantum bound-state calculations and the analysis of the results. Detailed comparison is made with the available experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号