首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38833篇
  免费   5673篇
  国内免费   4149篇
化学   27558篇
晶体学   435篇
力学   2324篇
综合类   406篇
数学   4422篇
物理学   13510篇
  2024年   95篇
  2023年   711篇
  2022年   1032篇
  2021年   1201篇
  2020年   1461篇
  2019年   1473篇
  2018年   1195篇
  2017年   1082篇
  2016年   1654篇
  2015年   1667篇
  2014年   2061篇
  2013年   2684篇
  2012年   3433篇
  2011年   3543篇
  2010年   2329篇
  2009年   2309篇
  2008年   2489篇
  2007年   2304篇
  2006年   2066篇
  2005年   1671篇
  2004年   1338篇
  2003年   1100篇
  2002年   1064篇
  2001年   843篇
  2000年   756篇
  1999年   831篇
  1998年   699篇
  1997年   673篇
  1996年   771篇
  1995年   612篇
  1994年   551篇
  1993年   463篇
  1992年   438篇
  1991年   371篇
  1990年   299篇
  1989年   232篇
  1988年   192篇
  1987年   155篇
  1986年   148篇
  1985年   150篇
  1984年   101篇
  1983年   76篇
  1982年   46篇
  1981年   41篇
  1980年   22篇
  1978年   20篇
  1977年   23篇
  1976年   21篇
  1975年   29篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 469 毫秒
91.
The bulk polymerization of styrene initiated by ?‐caprolactam (CL) and n‐dodecyl mercaptan (RSH) has been explored. This novel polymerization system shows living characteristics. For example, the molecular weight of the resulting polymers increases with conversion, and the system has the ability to form diblock copolymers and so forth. The polymer chain end contains thiol and lactam structures, which we have investigated with Fourier transform infrared, 1H NMR, and 13C NMR techniques. Electron spin resonance spectra and theoretical calculations by the Hartree–Fock methods have been used to examine the mechanism. The results reveal that the initial polymerization starts from thiol via a chain‐transfer reaction, and the propagation proceeds by the insertion of a monomer between the terminal group and the intermediate structure of lactam. Finally, the polymerization kinetics have been examined. The polymerization rate varies linearly with the concentration of CL and RSH, and this confirms the mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4976–4993, 2004  相似文献   
92.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
93.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
94.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   
95.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   
96.
In the present work, a new method was established by applying solid-phase extraction (SPE) to preconcentrate and separate polymeric aluminum (Al) and using ICP-AES to determine the polymeric Al, the total monomeric Al, and the total Al in soil extracts, respectively. A modified resin was prepared with impregnated 8-hydroxyquinoline-5-sulfoxinate (HQS) on the anion-exchange resin. It has good recognition ability for Al fractions, compared to the commonly used cation ion-exchange resin, which has a better ability to adsorb cations and a weak ability to recognize detailed Al species. The optimum conditions for Al fractionation sorption, elution and separation and the interference of foreign ions were studied with the prepared resin by continuous column and batch procedures. Monomeric Al was bound to Pyrocathecol Violet (PCV) at pH 6.2, whereas the polymeric Al species did not react with PCV for at least 15 min. Because a stable complex of Al-PCV was not absorbed on the HQS modified resin, the polymeric Al could be preconcentrated on-line by the HQS-modified resin. The adsorbed polymeric Al was eluted with 3 mL of 3 mol L(-1) of HCl, and then detected by ICP-AES. The method has been applied to directly determine polymeric Al in soil extracts with high selectivity as well as a high preconcentration factor. It gives a limit of detection of 0.6 ng mL(-1) with a relative standard deviation of less than 5.7% (n = 5, 0.24 microg mL(-1) Al).  相似文献   
97.
A PM3 calculation in vacuum of the inclusion complexation ofo-, m-, p-nitro-phenol with calix[n]arenes is performedsuccessfully. The pathways for inclusion process are describedand the most probable structures of the 1:1 complex are soughtthrough a potential energy scan. The energy differences betweenthe inclusion complexes and the hosts, by calculation, show thatthe most stable complexation is calix[4]-p-nitro phenol andcalix[6]-m-nitro phenol.  相似文献   
98.
Polypropylene (PP) was modified with elastomer or CaCO3 particles of two different sizes (1 μm and 50 nm) in various volume fractions. The dispersion morphology and mechanical properties of the two systems were investigated as functions of the particle size and volume fraction of the modifier. The brittle‐to‐tough transition occurred when the matrix ligament thickness was less than the critical ligament thickness, which was about 0.1 μm for the PP used here, being independent of the type of modifier. At the same matrix ligament thickness, the improvement of the toughness was obviously higher with the elastomer rather than with CaCO3, but adding CaCO3 increased the modulus of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1656–1662, 2004  相似文献   
99.
Microwave-assisted extraction (MAE) and microwave-assisted hydrolysis (MAAH) were developed for the sample preparation of guava leaves prior to GC determination of quercetin and its glycosides. Ethanol was selected as the solvent. The optimum MAE temperature, particle size, solvent volume and MAE time are 120 degrees C, 40 - 60 mesh, 20 mL and 5 min, respectively; the optimum MAAH temperature and time, HCl concentration, solvent are 100 degrees C, 5 min, 1.2 mol L(-1) HCl and ethanol, respectively.  相似文献   
100.
Non-dispersive atomic fluorescence spectrometry (NDAFS) coupled with vapor generation (VG) sample introduction was applied to the determination of the concentrations of hazardous heavy metals, such as arsenic, cadmium, lead and mercury, in seawater, soils and total airborne particulate matter (PM) collected around the Xiamen area in China. Almost 100% sample introduction efficiency was achieved by using thiourea and ascorbic acid for the pre-reduction of As(V) to As(III), K3Fe(CN)6 and tartaric acid for pre-oxidation of Pb(II) to Pb(IV), and masking the interferences arising from the co-existing transition metals to As, Cd, Hg and Pb during their vapor generation process. Moreover, a novel sample pretreatment device was developed to avoid the loss of mercury, lead, cadmium and arsenic during sample pretreatment. With such methods, the detection limit (DL) of arsenic, cadmium, lead and mercury was down to 0.08, 0.03, 0.05, 0.01 ng mL(-1) (3sigma), respectively. The relative standard deviations (RSD, n = 11) for arsenic, cadmium, lead and mercury at 10 ng mL(-1) were 0.9%, 1.6%, 1.3% and 2.0%, respectively. The concentrations of hazardous heavy metals in the environmental samples collected in Xiamen, China are in the range from 0.02 +/- 0.001 ng mL(-1) in seawater to 15.3 +/- 0.2 microg g(-1) in soils. Besides flame/GF-AAS and ICP-AES/MS, VG-NDAFS should be another choice for the determination of hazardous heavy metals in environmental samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号