全文获取类型
收费全文 | 61389篇 |
免费 | 12306篇 |
国内免费 | 5087篇 |
专业分类
化学 | 58608篇 |
晶体学 | 615篇 |
力学 | 1962篇 |
综合类 | 322篇 |
数学 | 5218篇 |
物理学 | 12057篇 |
出版年
2024年 | 96篇 |
2023年 | 622篇 |
2022年 | 1013篇 |
2021年 | 1182篇 |
2020年 | 2296篇 |
2019年 | 3538篇 |
2018年 | 1885篇 |
2017年 | 1433篇 |
2016年 | 4513篇 |
2015年 | 4646篇 |
2014年 | 4827篇 |
2013年 | 5756篇 |
2012年 | 5193篇 |
2011年 | 4388篇 |
2010年 | 4402篇 |
2009年 | 4142篇 |
2008年 | 3852篇 |
2007年 | 3217篇 |
2006年 | 2735篇 |
2005年 | 2768篇 |
2004年 | 2348篇 |
2003年 | 2184篇 |
2002年 | 3034篇 |
2001年 | 2350篇 |
2000年 | 1919篇 |
1999年 | 982篇 |
1998年 | 503篇 |
1997年 | 434篇 |
1996年 | 398篇 |
1995年 | 345篇 |
1994年 | 292篇 |
1993年 | 250篇 |
1992年 | 227篇 |
1991年 | 219篇 |
1990年 | 168篇 |
1989年 | 139篇 |
1988年 | 101篇 |
1987年 | 63篇 |
1986年 | 60篇 |
1985年 | 75篇 |
1984年 | 66篇 |
1983年 | 37篇 |
1982年 | 24篇 |
1981年 | 15篇 |
1980年 | 16篇 |
1979年 | 5篇 |
1978年 | 4篇 |
1976年 | 3篇 |
1957年 | 4篇 |
1936年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The reversible nonlinear conduction (RNC) in of high‐density polyethylene/acetylene carbon black composites with different degrees of crosslinking was studied above room temperature and below the melting point of high‐density polyethylene (HDPE). The experimental current density‐electric field strength curves can be overlapped onto a master curve, suggesting that the microscopic mechanisms for the appearance of RNC exist regardless of the ambient temperature and the crosslinking degree of the HDPE matrix. The relationship between the crossover current density and the linear conductivity can be explained in the framework of the dynamic random‐resistor‐network model. According to these results, two electron‐tunneling models are suggested to interpret the microscopic conduction behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1212–1217, 2004 相似文献
32.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004 相似文献
33.
C. Z. Chuai S. Li K. Almdal J. Alstrup J. Lyngaae‐Jrgensen 《Journal of Polymer Science.Polymer Physics》2004,42(5):898-913
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004 相似文献
34.
Sang‐Uk Kim Choonkeun Lee Saimani Sundar Wonbong Jang Seung‐Jin Yang Haksoo Han 《Journal of Polymer Science.Polymer Physics》2004,42(23):4303-4312
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004 相似文献
35.
Fang‐Chyou Chiu Sun‐Mou Lai Jong‐Wu Chen Pei‐Hsien Chu 《Journal of Polymer Science.Polymer Physics》2004,42(22):4139-4150
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004 相似文献
36.
Jem‐Kun Chen I‐Kuan Lin Fu‐Hsiang Ko Chih‐Feng Huang Kuo‐Shen Chen Chia‐Hao Chan Feng‐Chih Chang 《Journal of Polymer Science.Polymer Physics》2004,42(22):4063-4074
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004 相似文献
37.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004 相似文献
38.
Andr Luciani Christopher J. G. Plummer Tuan Nguyen Lszl Garamszegi Jan‐Anders E. Mnson 《Journal of Polymer Science.Polymer Physics》2004,42(7):1218-1225
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004 相似文献
39.
Seok‐Ho Hwang Kyung Soo Yoo Charles N. Moorefield Sang‐Won Lee George R. Newkome 《Journal of Polymer Science.Polymer Physics》2004,42(8):1487-1495
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004 相似文献
40.
E.‐A. McGonigle J. J. Liggat R. A. Pethrick S. D. Jenkins J. H. Daly D. Hayward 《Journal of Polymer Science.Polymer Physics》2004,42(15):2916-2929
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004 相似文献