首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78601篇
  免费   14967篇
  国内免费   21284篇
化学   56570篇
晶体学   2676篇
力学   5468篇
综合类   2341篇
数学   11497篇
物理学   36300篇
  2024年   171篇
  2023年   1036篇
  2022年   2828篇
  2021年   2721篇
  2020年   2816篇
  2019年   2810篇
  2018年   2469篇
  2017年   3318篇
  2016年   2992篇
  2015年   3864篇
  2014年   4691篇
  2013年   6209篇
  2012年   6634篇
  2011年   6903篇
  2010年   6281篇
  2009年   6358篇
  2008年   7176篇
  2007年   6341篇
  2006年   6152篇
  2005年   5249篇
  2004年   4059篇
  2003年   3010篇
  2002年   2876篇
  2001年   2780篇
  2000年   2837篇
  1999年   1961篇
  1998年   1229篇
  1997年   1028篇
  1996年   1018篇
  1995年   904篇
  1994年   933篇
  1993年   851篇
  1992年   721篇
  1991年   542篇
  1990年   543篇
  1989年   493篇
  1988年   396篇
  1987年   304篇
  1986年   273篇
  1985年   210篇
  1984年   159篇
  1983年   177篇
  1982年   147篇
  1981年   109篇
  1980年   75篇
  1979年   65篇
  1978年   24篇
  1976年   16篇
  1971年   16篇
  1959年   18篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
32.
Zhu  Lina  Zheng  Yangong  Jian  Jiawen 《Ionics》2015,21(10):2919-2926
Ionics - This study aims to explore the potential merits of palladium oxide sensing electrode. PdO is applied on a solid-state potentiometric sensor on an yttria-stabilized zirconia (YSZ)...  相似文献   
33.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
34.
35.
Dioscin (DIS), one of the most abundant bioactive steroidal saponins in Dioscorea sp., is used as a complementary medicine to treat coronary disease and angina pectoris in China. Although the pharmacological activities and pharmacokinetics of DIS have been well demonstrated, information regarding the final metabolic fates is very limited. This study investigated the in vivo metabolic profiles of DIS after oral administration by ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry method. The structures of the metabolites were identified and tentatively characterized by means of comparing the molecular mass, retention time and fragmentation pattern of the analytes with those of the parent compound. A total of eight metabolites, including seven phase I and one phase II metabolites, were detected and tentatively identified for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. In addition, a possible metabolic pathway on the biotransformation of DIS in vivo was proposed. This study provides valuable and new information on the metabolism of DIS, which will be helpful for further understanding its mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
36.
37.
38.
Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom-doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom-doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom-doped carbon consequently leads to more stored cations on the heteroatom-doped carbon surface, thus yielding a boosted charge storage performance.  相似文献   
39.
Li  C.  Zhang  D.  Cheng  G.  Zhu  Y. 《Experimental Mechanics》2020,60(3):329-343
Experimental Mechanics - There have been relatively few studies on mechanical properties of nanomaterials under high strain rates, mainly due to the lack of capable nanomechanical testing devices....  相似文献   
40.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号