首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24160篇
  免费   3885篇
  国内免费   2629篇
化学   16902篇
晶体学   296篇
力学   1439篇
综合类   239篇
数学   2659篇
物理学   9139篇
  2024年   78篇
  2023年   504篇
  2022年   818篇
  2021年   846篇
  2020年   984篇
  2019年   904篇
  2018年   752篇
  2017年   726篇
  2016年   1100篇
  2015年   1036篇
  2014年   1292篇
  2013年   1672篇
  2012年   2074篇
  2011年   2076篇
  2010年   1424篇
  2009年   1366篇
  2008年   1529篇
  2007年   1403篇
  2006年   1342篇
  2005年   1085篇
  2004年   869篇
  2003年   720篇
  2002年   623篇
  2001年   519篇
  2000年   512篇
  1999年   590篇
  1998年   487篇
  1997年   428篇
  1996年   436篇
  1995年   387篇
  1994年   357篇
  1993年   325篇
  1992年   269篇
  1991年   229篇
  1990年   235篇
  1989年   159篇
  1988年   119篇
  1987年   84篇
  1986年   97篇
  1985年   65篇
  1984年   37篇
  1983年   39篇
  1982年   37篇
  1981年   21篇
  1980年   8篇
  1979年   6篇
  1976年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Phase‐change memory (PCM) is regarded as one of the most promising candidates for the next‐generation nonvolatile memory. Its storage medium, phase‐change material, has attracted continuous exploration. Along the traditional GeTe–Sb2Te3 tie line, the binary compound Sb2Te3 is a high‐speed phase‐change material matrix. However, the low crystallization temperature prevents its practical application in PCM. Here, Cr is doped into Sb2Te3, called Cr–Sb2Te3 (CST), to improve the thermal stability. We find that, with increase of the Cr concentration, grains are obviously refined. However, all the CST films exhibit a single hexagonal phase as Sb2Te3 without phase separation. Also, the Cr helps to inhibit oxidation of Sb atoms. For the selected film CST_10.5, the resistance ratio between amorphous and crystalline states is more than two orders of magnitude; the temperature for 10‐year data retention is 120.8 °C, which indicates better thermal stability than GST and pure Sb2Te3. PCM cells based on CST_10.5 present small threshold current/voltage (4 μA/0.67 V). In addition, the cell can be operated by a low SET/RESET voltage pulse (1.1 V/2.4 V) with 50 ns width. Thus, Cr–Sb2Te3 with suitable composition is a promising novel phase‐change material used for PCM with high speed and good thermal stability performances. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
972.
Y.B. Xue  Y.J. Wang  Y.L. Tang  Y.L. Zhu 《哲学杂志》2015,95(19):2067-2077
How to control the material properties by manipulating the unitcell thickness is crucial for applications of ferroelectric ultrathin films. To understand the polarization behaviour of ultrathin PbTiO3 (PTO) films grown on SrTiO3 (STO) substrate, we have systematically explored the strength and direction of polarization in each unitcell layer, using density functional theory combined with Born effective charge method. Strikingly, we find that the polar state of ultrathin PTO films is a composite result depending not only on thickness but also on boundary condition, initial polarization direction, etc. Besides, we also studied the surface effect on the polarization in the thicker PTO films for comparison with the ultrathin ones, which suggests that the surface effect is basically confined in a small range (3–5 unitcells thick at surface region) no matter what kinds of surface terminations and polarization directions.  相似文献   
973.
An angular trapezoidal phase mask used for a wideband coronagraph is proposed. The azimuthal phase of the mask is double-periodic and has both trapezoidal and constant parts in each period. This kind of continuous phase distribution can be employed to avoid the abrupt phase variation of the 6-level phase distribution we proposed previously. Numerical calculations show that this more practical phase mask can still keep its superior performance in terms of starlight elimination, small inner working angle, and good achromatism. It is of great importance that there is no singularity in this kind of mask except for a singularity at the center. This mask design is close to real manufacturing conditions, and the process technology is superior.  相似文献   
974.
The electrochemical properties of various commercial carbon materials (activated carbon (AC), graphite (GP) and hard carbon (HC)) have been investigated for use as negative electrode for lithium ion capacitors. The rate capabilities and cycle durabilities are tested up to 20 C and 1000 cycles using full cell configurations. It is found that the lithium ion could not efficiently intercalate into the activated carbon materials. The symmetrical AC/AC capacitor shows good cycle durabilities at 10 C with capacity of 17 mA h g?1. The asymmetrical capacitors AC/GP and AC/HC with intercalated negative electrodes show higher capacities than that of AC/AC capacitor. Moreover, the AC/HC has better rate capabilities than AC/GP.  相似文献   
975.
Electrochemical performance of the pre-lithiated graphite and the as-assembled lithium-ion capacitors (LICs) were investigated within the Li/graphite two-electrode cell and activated carbon (AC)/graphite two-electrode cell, respectively. The morphologies of the electrodes were characterized by scanning electron microscopy (SEM). The Li intercalation of Li/graphite two-electrode cell was performed using short circuiting and galvanostatic charging techniques. The Li pre-doping process was characterized by electrochemical impedance spectroscopy (EIS). The cycle performance of the LICs were investigated at the rates of 1–20 C between the cut-off voltage at 2 to 4 V. The results demonstrated that the LIC cells with 8 h pre-doping time have the best cycle performance at the high rate of 10 C. Li pre-doping methodology plays a crucial role in the electrochemical performance of the graphite electrode and the as-assembled LICs.  相似文献   
976.
A novel photoelectrochemcial biosensing system was fabricated based on the composition of horseradish peroxidase (HRP), flower‐like CuInS2 (CIS) and graphene on indium tin oxide (ITO) electrode for detecting H2O2. The graphene layer was used as highly conductive scaffolds for electron transport from the ITO electrode to CIS. Furthermore, the flower‐like CIS enhanced the multi‐reflection of light and provided matrixes for the adsorption of HRP. Utilizing one‐pot solvothermal method, we prepared flower‐like CIS‐graphene hybrid (GCIS). Electrochemical tests displayed advantage of graphene with better electron conductivity, and HRP/GCIS showed higher photoelectrochemical behavior.  相似文献   
977.
Reaction of [MoO2(Acac)2] (Acac = acetylacetonate) with two similar hydrazone ligands in methanol yielded two mononuclear molybdenum(VI) oxocomplexes with general formula [MoO2(L)(CH3OH)], where L = L1 = (4-nitrophenoxy)acetic acid [1-(3-ethoxy-2-hydroxyphenyl)methylidene]hydrazide (H2L1) and L = L2 = (4-nitrophenoxy)acetic acid [1-(5-bromo-2-hydroxyphenyl)methylidene]hydrazide (H2L2). Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method. All investigated compounds were further characterized by elemental analysis and FT-IR spectra. Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to the MoO2 cores through enolate oxygen, phenolate oxygen, and azomethine nitrogen. The Mo atoms in both complexes are in octahedral coordination.  相似文献   
978.
The thermal behavior of the energetic material 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-tetracyclo-[5.5.0.05,9.03,11]-dodecane (HNIW or CL-20) and its mixtures with aluminum under linear temperature control condition and adiabatic condition were investigated by DSC-TG-MS-FT-IR and ARC. Two different particle sizes of aluminum powder (10 μm and 50 nm) were added into CL-20. The influence of particle size on the thermal behavior of CL-20 was studied by using of these apparatuses. The enthalpies of reaction and onset temperatures were determined for various heating rates. The kinetic parameters were found according to Kissinger method, Ozawa method, and Friedman method based on DSC data. The gaseous products from the decomposition of CL-20 and its mixtures were determined by simultaneous MS-FT-IR experiments. ARC measurements were performed to investigate the thermal stability of the samples. The onset temperature, adiabatic temperature rise, self-heat rate, time to maximum rate, and pressure–temperature profile were found from the data measured by ARC. Based on these results, the catalytic effect of aluminum powder was studied.  相似文献   
979.
A yolk-shell sulfur/carbon (S/C) composite for the cathode of lithium–sulfur batteries was successfully prepared by an accessible method with tetrahydrofuran as solvent. The as-prepared composites are characterized by thermal gravimetric, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption. In this composite, sulfur particle is encapsulated in the carbon shell even entering into the micropores of carbon Bp2000. The electrochemical performance of the S/C composites is evaluated. The results indicate that the S/C composite with 50 wt% sulfur content shows good reversibility, excellent rate capability, and slow degradation. It delivers an initial capacity of 784.4 mAh g?1 (based on sulfur weight) and preserves at 598.3 mAh g?1 after 195 cycles at 1C. It achieves a high-capacity retention of 76.27 % from the 5th to 200th cycle, and as high as 91.19 % during the latter 150 cycles. The improvement is mainly attributed to the favorable structure of the S/C composite, in which the carbon cannot only facilitate transport of electrons and Li+ ions but also trap polysulfides and retard the shuttle effect during charge/discharge process.  相似文献   
980.
A binder-free activated carbon paper (ACP) was simply prepared for electric double-layer capacitors by the carbonization of filter paper, followed by heat-air activation at a lower temperature. The electrochemical cells assembled using the as-prepared ACP-470 provides a high specific capacitance of 296.4 F g?1 at current density of 0.5 A g?1 and a high rate performance at a current density of 150 A g?1 with a capacitance of 191.2 F g?1 and a high cycle ability at 10,000 recycles with 100 % capacitance retention. In addition, the ACP has a lower electrical resistivity and provides an effective energy storage performance with a maximum energy density of 41.2 Wh kg?1 and a maximum power density of 138.0 kW kg?1 in a voltage range of 1 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号