首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18575篇
  免费   3292篇
  国内免费   1681篇
化学   13008篇
晶体学   179篇
力学   1028篇
综合类   68篇
数学   2027篇
物理学   7238篇
  2024年   39篇
  2023年   394篇
  2022年   570篇
  2021年   677篇
  2020年   737篇
  2019年   746篇
  2018年   713篇
  2017年   566篇
  2016年   955篇
  2015年   816篇
  2014年   1044篇
  2013年   1377篇
  2012年   1709篇
  2011年   1765篇
  2010年   1161篇
  2009年   1084篇
  2008年   1197篇
  2007年   1039篇
  2006年   990篇
  2005年   792篇
  2004年   604篇
  2003年   429篇
  2002年   439篇
  2001年   334篇
  2000年   276篇
  1999年   392篇
  1998年   276篇
  1997年   293篇
  1996年   284篇
  1995年   247篇
  1994年   212篇
  1993年   217篇
  1992年   144篇
  1991年   160篇
  1990年   129篇
  1989年   100篇
  1988年   88篇
  1987年   71篇
  1986年   68篇
  1985年   54篇
  1984年   57篇
  1983年   30篇
  1982年   32篇
  1981年   23篇
  1980年   26篇
  1978年   13篇
  1976年   16篇
  1975年   15篇
  1973年   15篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A novel 5,15-di-[4-carboxylatomethoxy]phenyl-10,20-diphenylporphyrin, its copper complex and the corresponding metalloporphyrin-TiO2 photocatalyst were synthesized and characterized by DRS, SEM, XRD, and FT–IR. The photocatalytic effects of anataseTiO2 impregnated with this copper(II) porphyrin was investigated by photodegradation of 4-nitrophenol(4-NP) in aqueous solution under Xenon lamp irradiation. The results indicated that the photoactivity of copper(II) porphyrin-TiO2 composite was evidently enhanced by the interaction between carboxyl of the porphyrin molecule and hydroxyls anchored on the TiO2. Futhermore, the copper(II) carboxylic porphyrin displayed good adsorption behavior and activity of the dye-sensized TiO2 system.  相似文献   
992.
从仿生学角度出发,将自制的人工角膜支架材料羟基磷灰石/聚乙烯醇/壳聚糖(n-HA/PVA/CS)浸泡在模拟体液中,对材料的含水率及力学性能进行了测试,并利用扫描电镜、X射线衍射仪、电感耦合等离子体原子发射光谱仪及热重分析仪研究了材料在模拟体液中的形貌、晶体结构、元素组成及热稳定性.结果表明,在模拟体液中,n-HA/PVA/CS复合水凝胶的含水率为80%~86%,具有较高的拉伸强度,能承受正常眼压,且热稳定性较好.在浸泡后期,n-HA/CS/PVA复合材料对Ca2+的吸附和释放达到动态平衡;而其表面含有微量的纳米羟基磷灰石沉积,有利于纤维细胞的长入.  相似文献   
993.
Biocompatible and proteolysis-resistant poly-β-peptides have broad applications and are dominantly synthesized via the harsh and water-sensitive ring-opening polymerization of β-lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3)2. We have developed a controllable and water-insensitive ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides (β-NTAs) that can be operated in open vessels to prepare poly-β-peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of β-NTA polymerization and resulting poly-β-peptides, which is validated by the finding of a HDP-mimicking poly-β-peptide with potent antimicrobial activities. The living β-NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore-labelled poly-β-peptide.  相似文献   
994.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx-Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co−S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx-Vo-S to exhibit much superior OER activity. FeCoOx-Vo-S exhibits a mass activity of 2440.0 A g−1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec−1, indicative of its excellent charge transfer rate. When FeCoOx-Vo-S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm−2 and 406.0 mA cm−2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   
995.
Most NIR-IIb fluorophores are nanoparticle-based probes with long retention (≈1 month or longer) in the body. Here, we applied a novel cross-linked coating to functionalize core/shell lead sulfide/cadmium sulfide quantum dots (PbS/CdS QDs) emitting at ≈1600 nm. The coating was comprised of an amphiphilic polymer followed by three crosslinked amphiphilic polymeric layers (P3 coating), imparting high biocompatibility and >90 % excretion of QDs within 2 weeks of intravenous administration. The P3-QDs were conjugated to an engineered anti-CD8 diabody (Cys-diabody) for in vivo molecular imaging of CD8+ cytotoxic T lymphocytes (CTLs) in response to anti-PD-L1 therapy. Two-plex molecular imaging in combination with down-conversion Er nanoparticles (ErNPs) was performed for real-time in vivo monitoring of PD-L1 positive tumor cells and CTLs with cellular resolution by non-invasive NIR-IIb light sheet microscopy. Imaging of angiogenesis in the tumor microenvironment and of lymph nodes deep in the body with a signal-to-background ratio of up to ≈170 was also achieved using P3-QDs.  相似文献   
996.
Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular-size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid-state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   
997.
Radiation-induced cleavage for controlled release in vivo is yet to be established. We demonstrate the use of 3,5-dihydroxybenzyl carbamate (DHBC) as a masking group that is selectively and efficiently removed by external radiation in vitro and in vivo. DHBC reacts mainly with hydroxyl radicals produced by radiation to afford hydroxylation at para/ortho positions, followed by 1,4- or 1,6-elimination to rescue the functionality of the client molecule. The reaction is rapid and can liberate functional molecules under physiological conditions. This controlled-release platform is compatible with living systems, as demonstrated by the release of a rhodol fluorophore derivative in cells and tumor xenografts. The combined benefits of the robust caging group, the good release yield, and the independence of penetration depth make DHBC derivatives attractive chemical caging moieties for use in chemical biology and prodrug activation.  相似文献   
998.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   
999.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li-air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open-air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high-performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g−1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   
1000.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C−H group and an electron-rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C−H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol−1. Ab-initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen-bond making and breaking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号