首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   28篇
  国内免费   16篇
化学   128篇
晶体学   3篇
力学   9篇
综合类   8篇
数学   53篇
物理学   31篇
  2024年   1篇
  2023年   9篇
  2022年   15篇
  2021年   6篇
  2020年   12篇
  2019年   14篇
  2018年   8篇
  2017年   10篇
  2016年   6篇
  2015年   16篇
  2014年   15篇
  2013年   21篇
  2012年   19篇
  2011年   13篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   11篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   7篇
  1994年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
101.
We consider a series of benzenoid isomers obtained by attaching fragments to ann-radical. Some of their topological properties, such as the number of Kekulé patterns and the maximum number of aromatic π-sextets are established. Research of this author is supported in part by the RDG grant of the Pennsylvania State University.  相似文献   
102.
Although great successes have been achieved, the preparation of closed-loop recyclable polyesters with high working temperatures still remains as a big challenge. Herein, we present the syntheses of a series of enantiopure bicyclic ether-ester monomers by upcycling of poly(3-hydroxybutyrate) bioplastic. The “living”/controlled ring-opening polymerizations of these enantiopure monomers to produce stereoregular polyesters with controlled molecular weights and well-defined chain ends were achieved. The effects of stereoconfiguration and substituent on polymerization kinetics and thermodynamics as well as the thermal properties of resultant polyesters were investigated. Of note, the stereoregular polyesters are semi-crystalline materials with melting temperatures up to 176 °C, even higher than the commodity polyolefin plastics. These polyesters can be depolymerized back to recover pristine monomers, thus successfully establishing a closed-loop life cycle.  相似文献   
103.
Short-chain and medium-chain fatty acids have plentiful biological functions, which play a crucial role in the diagnosis and therapy of many diseases. Herein, a new method for simultaneous quantifying 17 short-chain and medium-chain fatty acids with high-performance liquid chromatography coupled with an ultraviolet detector was developed and the pre-column derivatization by indole-3-acetic acid hydrazide was performed to improve the separation and detection. The conditions of the derivatization reaction were systematically investigated. Subsequently, the method was validated and the results showed a satisfactory linearity (linear regression coefficients > 0.9969), the limit of detection (4.0×10−3–1.9×10−2 μmol/L), precision (0.9%–7.3% for intra-day and 2.0%–9.8% for inter-day), recovery (90.0%–109.1% with relative standard deviation <7.7%) and stability (0.1%–3.3% for standard solution and 0.2%–3.9% for fecal sample). Finally, the established method was successfully applied to quantify short-chain and medium-chain fatty acids in the feces of healthy control and diabetic rats. Eleven kinds of short-chain and medium-chain fatty acids were detected and six of them showed a significant difference between the control group and the model group.  相似文献   
104.
The separation of polar compounds is challenging work due to poor retention and insufficient selectivity. In the present study, an efficient strategy for large-scale preparation of five polar polyphenols including three isomers from Phyllanthus emblica Linn has been established by preparative high-speed counter-current chromatography. Macroporous resin column chromatography was used for the enrichment of the polar polyphenols. However, sugar and other ultra-polar impurities were co-washed out with the targets. Liquid-liquid extraction with ethyl acetate/water (1/1, v/v) solvent system was developed to remove the ultra-polar impurities with a clearance rate of 95%. Finally, the targets were introduced to preparative high-speed counter-current chromatography for separation using ethyl acetate/n-butanol/acetic acid/water (2/7/1/10, v/v/v/v) solvent system. As a result, 191 mg of Mucic acid 1,4-lactone 5-O-gallate, 370 mg of β-Glucogallin, 301 mg of Gallic acid, 195 mg of Mucic acid 1,4-lactone 3-O-gallate and 176 mg of Mucic acid 1,4-lactone 2-O-gallate with purity higher than 98% were obtained from 1.5 g of sample. Mucic acid 1,4-lactone 3-O-gallate, Mucic acid 1,4-lactone 3-O-gallate, and Mucic acid 1,4-lactone 2-O-gallate are isomers. The results showed that high-speed counter-current chromatography could be well developed for the separation of polar compounds from natural products.  相似文献   
105.
The combustion of fossil fuels increases atmospheric carbon dioxide (CO2) concentrations, leading to adverse impacts on the planetary radiation balance and, consequently, on the climate. Fossil fuel utilization has contributed to a marked rise in global temperatures, now at least 1.2 ℃ above 'pre-industrial' levels. To meet the 2015 Paris Agreement target of 1.5 ℃ above pre-industrial levels, considerable efforts are required to efficiently capture and utilize CO2. Among the different strategies developed for converting CO2, electrochemical CO2 reduction (ECR) to valuable chemicals using renewable energy is expected to revolutionize the manufacture of sustainable "green" chemicals, thereby achieving a closed anthropogenic carbon cycle. However, CO2 is a thermodynamically stable and kinetically inert molecule that requires high electrical energy to bend the linear O=C=O bond by attacking the C atom. To facilitate the ECR with good energy efficiency, it is essential to lower the reaction overpotential as well as maintain a high current density and desirable product selectivity; therefore, the design and development of advanced electrocatalysts are crucial. A plethora of heterogeneous and homogeneous materials has been explored in the ECR. Among these materials, single-atom catalysts (SACs) have been the focus of most extensive research in the context of ECR. A SAC with isolated metal atoms dispersed on a supporting host exhibits a unique electronic structure, well-defined coordination environment, and an extremely high atom utilization maximum; thus, SACs have emerged as promising materials over the last two decades. Single-atom catalysis has covered the periodic table from d-block and ds-block metals to p-block metals. The types of support materials for SACs, ranging from metal oxides to tailored carbon materials, have also expanded. The adsorption strength and catalytic activity of SACs can be effectively tuned by modulating the central metal and local coordination structure of the SACs. In this article, we discuss the progress made to date in the field of single-atom catalysis for promoting ECR. We provide a comprehensive review of state-of-the-art SACs for the ECR in terms of product distribution, selectivity, partial current density, and performance stability. Special attention is paid to the modification of SACs to improve the ECR efficiency. This includes tailoring the coordination of the heteroatom, constructing bimetallic sites, engineering the morphologies and surface defects of supports, and regulating surface functional groups. The correlation of the coordination structure of SACs and metal-support interactions with ECR performance is analyzed. Finally, development opportunities and challenges for the application of SACs in the ECR, especially to form multi-carbon products, are presented.  相似文献   
106.
Zhibo Zhang 《Tetrahedron》2008,64(48):10791-10797
During the synthetic pursuit of guanosine (tri-G) and xanthosine (tri-X) tricyclic nucleosides analogues, an interesting side product was discovered. In an effort to uncover the mechanistic factors leading to this result, a series of reaction conditions were investigated. It was found that by varying the conditions, the appearance of the side product could be controlled. In addition, the yield of the desired products could be manipulated to afford either a 50:50 mix of both tri-G and tri-X, or a majority of one or the other. To demonstrate the broad utility of the method, it was also adapted to the synthesis of guanosine and xanthosine from 5-amino-1-β-d-ribofuranosyl-4-imidazolecarboxyamide (AICAR). The mechanistic details surrounding the synthetic efforts are reported herein.  相似文献   
107.
Porous organic polymers (POPs) have been considered as prominent adsorbents for volatile iodine. So far, both crystalline and amorphous POPs have accomplished excellent iodine capture capability. Considering the difficulty and challenges in preparing perfect crystalline POPs, more explorations into developing versatile amorphous POPs are needed. Herein, amorphous POPs based on the Schiff‐base reaction were designed and synthesized for volatile iodine removal. Four amorphous POPs products named as NDB‐H , NDB‐S , ADB‐HS , and ADB‐S obtained under different solvothermal conditions were investigated in terms of their morphologies, porosity, and their iodine enrichment performance in detail. It is noteworthy that excellent efficiency for removing iodine vapor was acquired for NDB‐S (≈425 wt %), ADB‐HS (≈345 wt %), and ADB‐S (≈342 wt %). Remarkably, NDB‐H exhibited an iodine capture capacity up to ≈443 wt %. Excellent reusability was obtained as well. Amorphous NDB‐H has accomplished an extremely high iodine capture performance, illustrating the great chance to exploit versatile amorphous POPs for iodine enrichment and removal based on Schiff‐base chemistry.  相似文献   
108.
FeCl3·6H2O-promoted biomimetic oxidations of 3,5-dihalogeno-resveratrol in different acetone systems produced several coupling intermediates bearing distinct dimeric skeletons with moderate yields. The subsequent deprotection reactions of brominated coupling products achieved the efficient synthesis of natural products (±)-ε-viniferin, (±)-ampelosin B, and (±)-gnetins F, as well as an unnatural oligostilbene. The coupling mechanisms for the formation of different dimeric structures were also proposed.  相似文献   
109.
Constructing polymeric toroids with a uniform, tunable size is challenging. Reported herein is the formation of uniform toroids from poly(γ-benzyl-l -glutamate)-graft-poly(ethylene glycol) (PBLG-g-PEG) graft copolymers by a two-step self-assembly process. In the first step, uniform rodlike micelles are prepared by dialyzing the polymer dissolved in tetrahydrofuran (THF)/N,N′-dimethylformamide (DMF) against water. With the addition of THF in the second step, the rodlike micelles curve and then close end-to-end to form uniform toroids, which resemble a cyclization reaction.  相似文献   
110.
We have investigated the photocatalysis of partially deuterated methanol (CD(3)OH) and H(2)O on TiO(2)(110) at 400 nm using a newly developed photocatalysis apparatus in combination with theoretical calculations. Photocatalyzed products, CD(2)O on Ti(5c) sites, and H and D atoms on bridge-bonded oxygen (BBO) sites from CD(3)OH have been clearly detected, while no evidence of H(2)O photocatalysis was found. The experimental results show that dissociation of CD(3)OH on TiO(2)(110) occurs in a stepwise manner in which the O-H dissociation proceeds first and is then followed by C-D dissociation. Theoretical calculations indicate that the high reverse barrier to C-D recombination and the facile desorption of CD(2)O make photocatalytic methanol dissociation on TiO(2)(110) proceed efficiently. Theoretical results also reveal that the reverse reactions, i.e, O-H recombination after H(2)O photocatalytic dissociation on TiO(2)(110), may occur easily, thus inhibiting efficient photocatalytic water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号