首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   307篇
  国内免费   144篇
化学   1233篇
晶体学   15篇
力学   86篇
综合类   3篇
数学   112篇
物理学   598篇
  2024年   9篇
  2023年   31篇
  2022年   42篇
  2021年   73篇
  2020年   61篇
  2019年   62篇
  2018年   60篇
  2017年   43篇
  2016年   80篇
  2015年   90篇
  2014年   86篇
  2013年   101篇
  2012年   159篇
  2011年   157篇
  2010年   97篇
  2009年   86篇
  2008年   122篇
  2007年   103篇
  2006年   97篇
  2005年   101篇
  2004年   59篇
  2003年   37篇
  2002年   43篇
  2001年   25篇
  2000年   27篇
  1999年   25篇
  1998年   18篇
  1997年   20篇
  1996年   16篇
  1995年   18篇
  1994年   13篇
  1993年   7篇
  1992年   11篇
  1991年   19篇
  1990年   13篇
  1989年   4篇
  1988年   3篇
  1987年   7篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1947年   1篇
  1946年   1篇
排序方式: 共有2047条查询结果,搜索用时 15 毫秒
101.
We previously reported that sequence and partial linkage information, including chain and blood-group types, of reducing oligosaccharides can be obtained from negative-ion electrospray CID MS/MS on a quadrupole-orthogonal time-of-flight instrument with high sensitivity and without derivatization (Chai, W.; Piskarev, V.; Lawson, A. M. Anal. Chem. 2001, 73, 651-657). In contrast to oligonucleotides and peptides, oligosaccharides can form branched structures that result in a greater degree of structural complexity. In the present work we apply negative-ion electrospray CID MS/MS to core-branching pattern analysis using nine 3,6-branched and variously fucosylated oligosaccharides based on hexasaccharide backbones LNH/LNnH as examples. The important features of the method are the combined use of CID MS/MS of singly and doubly charged molecular ions of underivatized oligosaccharides to deduce the branching pattern and to assign the structural details of each of the 3- and 6-branches. These spectra give complimentary structural information. In the spectra of [M - H]-, fragment ions from the 6-linked branch are dominant and those from the 3-linked branch are absent, while fragment ions from both branches occur in the spectra of [M - 2H]2-. This allows the distinction of fragment ions derived from either the 3- or 6-branches. In addition, a unique D2beta-3 ion, arising from double D-type cleavage at the 3-linked glycosidic bond of the branched Gal core residue, provides direct evidence of the branching pattern with sequence and partial linkage information being derived from C- and A-type fragmentations, respectively.  相似文献   
102.
In the present study a method using enriched stable isotope tracer and instrumental neutron activation analysis (INAA) was developed to study the dynamic distribution of rare earth elements (REEs) in a variety of organs and tissues of Wistar rats. Stable isotopes 152Sm and 168Yb were selected as tracers for the experiment. Intravenously injected 152Sm and 168Yb in chloride form could be quickly absorbed and distributed in almost all the organs and tissues of interest, including liver, skeleton, kidney, spleen, heart, lung, testicle, and blood serum. Liver and skeleton had high ability to take up 152Sm and 168Yb under the experimental conditions, whereas the contents of the elements in other organs were generally lower than 2% of the given dose during the whole experimental period. The difference in distribution of 152Sm and 168Yb in the body was also discussed.  相似文献   
103.
104.
Journal of Solid State Electrochemistry - In this work, nanorods like bimetallic Zn/Mn metal–organic-frameworks (MOFs) are proposed as the precursor for preparing MnxOy/porous carbon...  相似文献   
105.
The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.  相似文献   
106.
Salvia miltiorrhiza Bunge (SM) has been extensively used in Alzheimer’s disease treatment, the permeability through the blood-brain barrier (BBB) determining its efficacy. However, the transport mechanism of SM components across the BBB remains to be clarified. A simple, precise, and sensitive method using LC-MS/MS was developed for simultaneous quantification of tanshinone I (TS I), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), cryptotanshinone (CTS), protocatechuic aldehyde (PAL), protocatechuic acid (PCTA), and caffeic acid (CFA) in transport samples. The analytes were separated on a C18 column by gradient elution. Multiple reaction monitoring mode via electrospray ionization source was used to quantify the analytes in positive mode for TS I, DTS I, TS IIA, CTS, and negative mode for PAL, PCTA, and CFA. The linearity ranges were 0.1–8 ng/mL for TS I and DTS I, 0.2–8 ng/mL for TS IIA, 1–80 ng/mL for CTS, 20–800 ng/mL for PAL and CFA, and 10–4000 ng/mL for PCTA. The developed method was accurate and precise for the compounds. The relative matrix effect was less than 15%, and the analytes were stable for analysis. The established method was successfully applied for transport experiments on a BBB cell model to evaluate the apparent permeability of the seven components.  相似文献   
107.
The change in the valence state of nanocluster can induce remarkable changes in the properties and structure. However, achieving the valence state changes in nanoclusters is still a challenge. In this work, we use Cu2+ as dopant to “oxidize” [Ag62S12(SBut)32]2+ (4 free electrons) to obtain the new nanocluster: [Ag62−xCuxS12(SBut)32]4+ with 2 free electrons. As revealed by its structure, the [Ag62−xCuxS12(SBut)32]4+ (x=10∼21) has a similar structure to that of [Ag62S12(SBut)32]2+ precursor and all the Cu atoms occupy the surface site of nanocluster. It′s worth noting that with the Cu atoms doping, the [Ag62−xCuxS12(SBut)32]4+ nanocluster is more stable than [Ag62S12(SBut)32]2+ at higher temperature and in electrochemical cycle. This result has laid a foundation for the subsequent application and exploration. Overall, this work reveals crystals structure of a new Ag−Cu nanocluster and offers a new insight into the electron reduction/oxidation of nanocluster.  相似文献   
108.
Six hybrid uranyl–transition metal compounds [UO2Ni(cptpy)2(HCOO)2(DMF)(H2O)] ( 1 ), [UO2Ni(cptpy)2(BTPA)2] ( 2 ), [UO2Fe(cptpy)2(HCOO)2(DMF)(H2O)] ( 3 ), [UO2Fe(cptpy)2(BTPA)2] ( 4 ), [UO2Co(cptpy)2(HCOO)2(DMF)(H2O)] ( 5 ), and [UO2Co(cptpy)2(BTPA)2] ( 6 ), based on bifunctional ligand 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (Hcptpy) are reported (H2BTPA = 4,4′-biphenyldicarboxylic acid). Single-crystal XRD revealed that all six compounds feature similar metalloligands, which consist of two cptpy anions and one transition metal cation. The metalloligand M(cptpy)2 can be considered to be an extended linear dicarboxylic ligand with length of 22.12 Å. Compounds 1 , 3 , and 5 are isomers, and all of them feature 1D chain structures. The adjacent 1D chains are connected together by hydrogen bonds and π–π interactions to form a 3D porous structure, which is filled with solvent molecules and can be exchanged with I2. Compounds 2 , 4 , and 6 are also isomers, and all of them feature 2D honeycomb (6,3) networks with hexagonal units of dimensions 41.91×26.89 Å, which are the largest among uranyl compounds with honeycomb networks. The large aperture allows two sets of equivalent networks to be entangled together to result in a 2D+2D→3D polycatenated framework. Remarkably, these uranyl compounds exhibit high catalytic activity for cycloaddition of carbon dioxide. Moreover, the geometric and electronic structures of compounds 1 and 2 are systematically discussed on the basis of DFT calculations.  相似文献   
109.
Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La3+ and Nd3+) is explored in molten LiCl-KCl-LiF-LnCl3 salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln3+ occur when F concentration increases, indicating that the F anions interact with Ln3+ via substituting the coordinated Cl anions, and confirm [LnClxFy]3−x−y (ymax=3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl and F anions, which leads to the formation of four distinct Ln(III) species: [LnCl6]3−, [LnCl5F]3−, [LnCl4F2]3− and [LnCl4F3]4−. Among them, the seven-coordinated [LnCl4F3]4− complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln−F interaction is weaker than that between transition metal and F ions.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号