全文获取类型
收费全文 | 45931篇 |
免费 | 6461篇 |
国内免费 | 5175篇 |
专业分类
化学 | 32787篇 |
晶体学 | 571篇 |
力学 | 2566篇 |
综合类 | 381篇 |
数学 | 4665篇 |
物理学 | 16597篇 |
出版年
2024年 | 397篇 |
2023年 | 927篇 |
2022年 | 1530篇 |
2021年 | 1832篇 |
2020年 | 1992篇 |
2019年 | 2024篇 |
2018年 | 1458篇 |
2017年 | 1411篇 |
2016年 | 2025篇 |
2015年 | 2056篇 |
2014年 | 2417篇 |
2013年 | 3164篇 |
2012年 | 3663篇 |
2011年 | 3826篇 |
2010年 | 2740篇 |
2009年 | 2495篇 |
2008年 | 2914篇 |
2007年 | 2646篇 |
2006年 | 2388篇 |
2005年 | 2026篇 |
2004年 | 1644篇 |
2003年 | 1453篇 |
2002年 | 1523篇 |
2001年 | 1206篇 |
2000年 | 1022篇 |
1999年 | 893篇 |
1998年 | 737篇 |
1997年 | 662篇 |
1996年 | 689篇 |
1995年 | 537篇 |
1994年 | 580篇 |
1993年 | 409篇 |
1992年 | 390篇 |
1991年 | 360篇 |
1990年 | 268篇 |
1989年 | 228篇 |
1988年 | 179篇 |
1987年 | 138篇 |
1986年 | 138篇 |
1985年 | 120篇 |
1984年 | 87篇 |
1983年 | 67篇 |
1982年 | 57篇 |
1981年 | 38篇 |
1980年 | 50篇 |
1979年 | 25篇 |
1978年 | 14篇 |
1976年 | 15篇 |
1975年 | 15篇 |
1974年 | 15篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Ben Li Yumeng Ji Chenlong Yi Xufeng Wang Chaoyang Liu Chufan Wang Xiaohu Lu Xiaohan Xu Xiaowei Wang 《Molecules (Basel, Switzerland)》2022,27(13)
Atherosclerosis (AS) is one of the leading causes of death among the elderly, and is primarily caused by foam cell generation and macrophage inflammation. Rutin is an anti-inflammatory, anti-oxidant, anti-allergic, and antiviral flavonoid molecule, known to have anti-atherosclerotic and autophagy-inducing properties, but its biological mechanism remains poorly understood. In this study, we uncovered that rutin could suppress the generation of inflammatory factors and reactive oxygen species (ROS) in ox-LDL-induced M2 macrophages and enhance their polarization. Moreover, rutin could decrease foam cell production, as shown by oil red O staining. In addition, rutin could increase the number of autophagosomes and the LC3II/I ratio, while lowering p62 expression. Furthermore, rutin could significantly inhibit the PI3K/ATK signaling pathway. In summary, rutin inhibits ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling, showing potential in treating atherosclerosis. 相似文献
122.
A high-performance liquid chromatography-tandem mass spectrometry method was established for the simultaneous determination of mycophenolic acid, mycophenolate mofetil, tacrolimus, rapamycin, everolimus and pimecrolimus in human whole blood by optimizing the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) preparation method. Whole blood was extracted into ethyl acetate, salted out with anhydrous magnesium sulfate, and purified with ethylenediamine-N-propyl silane adsorbent. The supernatant was evaporated under nitrogen until dry and finally reconstituted in methanol. Chromatographic separation was performed on an Agilent Poroshell 120 EC-C18 column in methanol (mobile phase A)-water (optimized for 0.1% acetic acid and 10 mM ammonium acetate, mobile phase B) at a 0.3 mL·min−1 flow rate. Electrospray ionization and positive ion multiple reaction monitoring were used for detection. The time for of analysis was 13 min. The calibration curves range of tacrolimus, rapamycin, everolimus and pimecrolimus were in the range of 1–100 ng·mL−1, mycophenolate mofetil in the range of 0.1–10 ng·mL−1 and mycophenolic acid at 10–1000 ng·mL−1. All correlation coefficients were >0.993. The coefficients of variation (CV, %) for inter-day and intra-day precision were less than 10%, while the spiked recoveries were in the range of 92.1% to 116%. Our method was rapid, sensitive, specific, and reproducible for the simultaneous determination of six immunosuppressants in human whole blood. Importantly, our approach can be used to monitor drug concentrations in the blood to facilitate disease treatment. 相似文献
123.
Mingfei Ji Zongtao Chai Jie Chen Gang Li Qiang Li Miao Li Yelei Ding Shaoyong Lu Guanqun Ju Jianquan Hou 《Molecules (Basel, Switzerland)》2022,27(13)
Small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a cysteine protease that catalyzes the cleavage of the C-terminus of SUMO1 for the processing of SUMO precursors and deSUMOylation of target proteins. SENP1 is considered to be a promising target for the treatment of hepatocellular carcinoma (HCC) and prostate cancer. SENP1 Gln597 is located at the unstructured loop connecting the helices α4 to α5. The Q597A mutation of SENP1 allosterically disrupts the hydrolytic reaction of SUMO1 through an unknown mechanism. Here, extensive multiple replicates of microsecond molecular dynamics (MD) simulations, coupled with principal component analysis, dynamic cross-correlation analysis, community network analysis, and binding free energy calculations, were performed to elucidate the detailed mechanism. Our MD simulations showed that the Q597A mutation induced marked dynamic conformational changes in SENP1, especially in the unstructured loop connecting the helices α4 to α5 which the mutation site occupies. Moreover, the Q597A mutation caused conformational changes to catalytic Cys603 and His533 at the active site, which might impair the catalytic activity of SENP1 in processing SUMO1. Moreover, binding free energy calculations revealed that the Q597A mutation had a minor effect on the binding affinity of SUMO1 to SENP1. Together, these results may broaden our understanding of the allosteric modulation of the SENP1−SUMO1 complex. 相似文献
124.
Lithium-sulfur(Li-S)batteries are promising candidates for high density electrochemical energy storage systems.However,the poor conductivity of S and the shuttl... 相似文献
125.
Shunli Ni Sheng Ma Yuhang Zhang Jie Yuan Haitao Yang Zouyouwei Lu Ningning Wang Jianping Sun Zhen Zhao Dong Li Shaobo Liu Hua Zhang Hui Chen Kui Jin Jinguang Cheng Li Yu Fang Zhou Xiaoli Dong Jiangping Hu Hong-Jun Gao Zhongxian Zhao 《中国物理快报》2021,(5):133-137
We systematically measure the superconducting(SC) and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c~3.5 K.We find that the upper critical field H_(c2)(T) exhibits a large anisotropic ratio of H_(c2)~(ab)/H_(c2)~c~9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)~(ab)/H_(c1)~c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T) and SC diamagnetic signal are found to change little initially below T_c~3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T~2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60° characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation. 相似文献
126.
Bingchao Qi Liqiang Song Lang Hu Dong Guo Gaotong Ren Tingwei Peng Mingchuan Liu Yexian Fang Chunyu Li Mingming Zhang Yan Li 《Experimental & molecular medicine》2022,54(7):946
Myocardial infarction (MI) is the leading cause of premature death among adults. Cardiomyocyte death and dysfunction of the remaining viable cardiomyocytes are the main pathological factors of heart failure after MI. Mitochondrial complexes are emerging as critical mediators for the regulation of cardiomyocyte function. However, the precise roles of mitochondrial complex subunits in heart failure after MI remain unclear. Here, we show that NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) expression is decreased in the hearts of heart failure patients and mice with myocardial infarction. Furthermore, we found that cardiac-specific Ndufs1 overexpression alleviates cardiac dysfunction and myocardial fibrosis in the healing phase of MI. Our results demonstrated that Ndufs1 overexpression alleviates MI/hypoxia-induced ROS production and ROS-related apoptosis. Moreover, upregulation of Ndufs1 expression improved the reduced activity of complex I and impaired mitochondrial respiratory function caused by MI/hypoxia. Given that mitochondrial function and cardiomyocyte apoptosis are closely related to heart failure after MI, the results of this study suggest that targeting Ndufs1 may be a potential therapeutic strategy to improve cardiac function in patients with heart failure.Subject terms: Heart failure, Myocardial infarction, Myocardial infarction 相似文献
127.
Luhua Xiao Xiaoying Lu Huilin Yang Cuiqing Lin Le Li Chen Ni Yuan Fang Suifen Mo Ruoting Zhan Ping Yan 《Molecules (Basel, Switzerland)》2022,27(11)
In this study, the antioxidant and hypolipidemic effects of Mesona Chinensis Benth (MCB) extracts were evaluated. Seven fractions (F0, F10, F20, F30, F40, F50 and MTF) were obtained from the MCB ethanol extracts. Compared to the commercial antioxidants (vitamin C), MTF and F30 exhibited higher antioxidant activities in the antiradical activity test and the FRAP assay. The half-inhibition concentration (IC50) for MTF and F30 were 5.323 µg/mL and 5.278 µg/mL, respectively. MTF at 200 µg/mL significantly decreased the accumulation of TG in oleic acid (OA)-induced HepG2 cells and reversed the inhibitory effect of Compound C on AMPK (MTF and F30 significantly increased the glucose utilization of insulin-induced HepG2 cells). In addition, the components of MTF were identified by HPLC-MS, which were caffeic acid, quercetin 3-O-galactoside, isoquercetin, astragalin, rosmarinic acid, aromadendrin-3-O-rutinoside, rosmarinic acid-3-O-glucoside and kaempferol-7-O-glucoside. Through statistical correlations by Simca P software, it was found that the main antioxidant and hypolipidemic components of MCB might be caffeic acid, kaempferol-7-O-glucoside, rosmarinic acid-3-O-glucoside and aromadendrin-3-O-rutinoside, which may play important roles in the AMPK pathway. MTF and F30 in MCB could be potential health products for the treatment of hyperlipidemia. 相似文献
128.
Objectives Green tea (Camellia sinensis) is a kind of unfermented tea that retains the natural substance in fresh leaves to a great extent. It is regarded as the second most popular drink in the world besides water. In this paper, the phytochemistry, pharmacology, and toxicology of green tea are reviewed systematically and comprehensively. Key findings Green tea has been demonstrated to be good for human health. Nowadays, multiple pharmacologically active components have been isolated and identified from green tea, including tea polyphenols, alkaloids, amino acids, polysaccharides, and volatile components. Recent studies have demonstrated that green tea shows versatile pharmacological activities, such as antioxidant, anticancer, hypoglycemic, antibacterial, antiviral, and neuroprotective. Studies on the toxic effects of green tea extract and its main ingredients have also raised concerns including hepatotoxicity and DNA damage. Summary Green tea can be used to assist the treatment of diabetes, Alzheimer’s disease, oral cancer, and dermatitis. Consequently, green tea has shown promising practical prospects in health care and disease prevention. 相似文献
129.
Suvarna H. Pagire Haushabhau S. Pagire Kun-Young Park Eun Jung Bae Kwang-eun Kim Minhee Kim Jihyeon Yoon Saravanan Parameswaran Jun-Ho Choi Sungmi Park Jae-Han Jeon Jin Sook Song Myung Ae Bae In-Kyu Lee Hail Kim Jae Myoung Suh Jin Hee Ahn 《Molecules (Basel, Switzerland)》2022,27(11)
Serotonin (5-hydroxytryptophan) is a hormone that regulates emotions in the central nervous system. However, serotonin in the peripheral system is associated with obesity and fatty liver disease. Because serotonin cannot cross the blood-brain barrier (BBB), we focused on identifying new tryptophan hydroxylase type I (TPH1) inhibitors that act only in peripheral tissues for treating obesity and fatty liver disease without affecting the central nervous system. Structural optimization inspired by para-chlorophenylalanine (pCPA) resulted in the identification of a series of oxyphenylalanine and heterocyclic phenylalanine derivatives as TPH1 inhibitors. Among these compounds, compound 18i with an IC50 value of 37 nM was the most active in vitro. Additionally, compound 18i showed good liver microsomal stability and did not significantly inhibit CYP and Herg. Furthermore, this TPH1 inhibitor was able to actively interact with the peripheral system without penetrating the BBB. Compound 18i and its prodrug reduced body weight gain in mammals and decreased in vivo fat accumulation. 相似文献
130.
Sijia Wu Wenjuan Chen Sujuan Lu Hailing Zhang Lianghong Yin 《Molecules (Basel, Switzerland)》2022,27(15)
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction. 相似文献