首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60791篇
  免费   9918篇
  国内免费   7991篇
化学   44397篇
晶体学   891篇
力学   3485篇
综合类   648篇
数学   7067篇
物理学   22212篇
  2024年   110篇
  2023年   1057篇
  2022年   1570篇
  2021年   1932篇
  2020年   2225篇
  2019年   2274篇
  2018年   1860篇
  2017年   1797篇
  2016年   2649篇
  2015年   2701篇
  2014年   3248篇
  2013年   4293篇
  2012年   5403篇
  2011年   5398篇
  2010年   3988篇
  2009年   3805篇
  2008年   4203篇
  2007年   3664篇
  2006年   3565篇
  2005年   3097篇
  2004年   2581篇
  2003年   2069篇
  2002年   2171篇
  2001年   1789篇
  2000年   1481篇
  1999年   1401篇
  1998年   1047篇
  1997年   875篇
  1996年   916篇
  1995年   778篇
  1994年   732篇
  1993年   607篇
  1992年   545篇
  1991年   490篇
  1990年   398篇
  1989年   286篇
  1988年   273篇
  1987年   221篇
  1986年   173篇
  1985年   195篇
  1984年   159篇
  1983年   137篇
  1982年   93篇
  1981年   76篇
  1980年   59篇
  1979年   44篇
  1978年   33篇
  1977年   27篇
  1976年   29篇
  1975年   35篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.
(XN)4R4簇合物的结构与化学键   总被引:1,自引:0,他引:1  
用密度泛函理论,在B3LYP/6-311G水平上,对(XN)4R4 (X=C,Si,Ge;R=H,CH3,NH2,OH)及合成的先驱化合物(XN)2R2进行几何构型、电子结构、振动频率和化学反应焓变等进行了研究.结果表明,(RCN)4比(CNR)4更稳定.所有簇合物的零点能EZP值,R=H时最小,R=CH3时最大,R配位原子依次为C、N和O时,EZP值逐渐减小.  相似文献   
932.
近年来,实验发现钛酸铅基材料具有负热膨胀性,且其热膨胀程度会受到掺杂元素的影响. 目前所研究的A位掺杂体系中,仅Cd原子掺杂能使钛酸铅负热膨胀性增强. 所以研究A位掺杂钛酸铅,比较Cd原子与其他原子在掺杂钛酸铅时化学键的异同,有助于深刻理解钛酸铅负热膨胀的本质. 本文利用第一性原理,分别优化了Sr、Ba、Cd掺杂钛酸铅的晶格常数,计算了它们的态密度和电荷密度. 结果表明Cd―O键的共价性强于Pb―O键,而Ba―O键和Sr―O键几乎呈离子性,Ba/Sr对Pb的替代削弱了化合物的共价性,降低了自发极化强度. 与实验测量的热膨胀系数对比可以发现,A位原子与氧原子之间的共价性增强,化合物负热膨胀程度升高;若A位原子与氧原子之间的共价性削弱,负热膨胀程度降低. 可见A位原子与氧原子之间的共价性影响了钛酸铅基化合物负热膨胀性.  相似文献   
933.
The efficient utilization of carbon dioxide (CO2) as a C1 feedstock is of great significance for green and sustainable development. Therefore, the efficient chemical conversion of CO2 into value-added products has recently attracted a lot of research attention in recent years. The transformation of CO2 generally requires high-energy substrates, specific catalysts, and harsh reaction conditions due to its high thermodynamic stability and kinetic inertness. Consequently, several efforts have been dedicated toward the development of high-performance catalysts and new reaction routes for CO2 conversion over the last few decades. To date, many routes of convert CO2 into value-added chemicals have been proposed, together with the development of heterogeneous and homogeneous catalysts. Among the advanced catalysts reported to date, ionic liquids (ILs) have been widely investigated and show great potential for the efficient, selective, and economical conversion of CO2 into highly valuable products under mild conditions, even under ambient conditions. Some task-specific ILs have been designed with unique functional groups (e.g., —OH, —SO3H, —NH2, —COOH, and —C≡N), which can act as the solvent, absorbent, activating agent, catalyst, or cocatalyst to realize the transformation of CO2 under metal-free and mild conditions. In addition, a variety of catalytic systems composed of ILs and metal catalysts have also been reported for the transformation of CO2, in which the combination of the IL and metal catalyst is responsible for CO2 conversion with high efficiency. In this review article, we summarize the recent advances in IL-mediated CO2 transformation into chemicals prepared via C—O, C—N, C—S, C—H, and C—C bond forming processes. ILs that can chemically capture CO2 with high capacity are first introduced, which can activate CO2 via the formation of IL-based carbonates or carbamates, thus realizing the transformation of CO2 under metal-free and mild conditions. Recent progress in IL-mediated CO2 transformations to form carbonates and various kinds of N- and S-containing compounds (e.g., oxazolidinones, ureas, benzimidazolones, formamides, methylamines, benzothiazoles, and other chemicals) as well as CO2 hydrogenation to give formic acid, methane, acetic acid, low-carbon alcohols, and hydrocarbons has been summarized in this review with a focus on the reaction routes, catalytic systems, and reaction mechanism. In these reactions, ILs can simultaneously activate the substrate via strong H-bonding in addition to activating CO2, and the cooperative effects among the ionic and molecular species and metal catalysts accomplish the reactions of CO2 with various kinds of substrates to afford a wide range of value-added chemicals. Finally, the shortcomings and perspectives of ILs are discussed. In short, IL-mediated CO2 transformations provide green and effective routes for the synthesis of high-value chemicals, which may have great potential for a wide range of applications.  相似文献   
934.
Mesoporous molecular sieves were synthesized from Beta and Fau zeolite precursors through S+XI+ route under extremely acidic conditions in parallel (designated as MBeta and MFau, respectively). The textural properties of MFau were different from its MBeta counterpart but resembled normal MCM-41 silica from TEOS. Al content in MBeta was almost equivalent to that in the initial Beta zeolite precursors, whereas only trace Al species was present in MFau from elemental analysis results. The hydrothermal stability of MBeta after post-synthesis ammonia treatment was considerably improved compared with normal MCM-41 aluminosilicates, whereas the MFau after the same procedure was as unstable as normal MCM-41 silica. Thus, the assembly behaviors of Beta and Fau zeolite precursors were comparatively studied based on these results. The microstructure of Fau zeolite precursors were degraded by the extremely acidic condition, and Al species was dissolved into the synthesis mixture. However, Beta zeolite precursors survived the chemical attack of extremely acidic media and were incorporated into mesostructured framework as primary building units.  相似文献   
935.
A plasma induced degradation process has been studied to treat 4-nitrotoluene (4-NT) present as an aqueous pollutant. The plasma was locally generated from a glow discharge around a tip of a platinum anode in an electrolytic solution. The influence of initial pH and Fe2+ on the degradation was examined. Major intermediates resulting from the degradation process were identified. Amongst the aromatic intermediates, p-hydroxybenzoic acid was the predominant degradation product. The formation of oxalic acid, malic acid was also observed. The final products of degradation were NH 4 + , NO 3 and CO2. Based on the analysis of intermediates and the kinetic considerations, the degradation was shown to follow a pseudo-first order reaction hence, a possible reaction pathway was proposed.  相似文献   
936.
A thin polymer melt on a substrate can be unstable to an electric field normal to the interface, a phenomenon that can be harnessed as a patterning technique with a range of potential applications. Motivated by the variety of patterns observed in experiments for polymers under both unpatterned and patterned masks, we describe here, from theoretical and numerical analyses, how nonlinear effects govern the growth of the instability and determine the final patterns. In particular, we discuss the nonlinear growth in terms of interactions among different Fourier modes and show that the second- and third-order nonlinearities favor the growth of hexagonal patterns under a featureless mask, in agreement with experimental observations. Also, numerical simulations based on the fully nonlinear model validate the prediction of the weakly nonlinear analysis: hexagonal patterns do emerge under an unpatterned mask. Furthermore, in one-dimensional simulations, we demonstrate the energetic evolution of this patterning process and reveal several "kinetically stable structures" along the path to the thermodynamically stable state. Two-dimensional simulations allow us to study the effects of both mask patterns and the initial film thickness. Generally, patterns on the mask guide the growth such that the pattern conforms to the geometric shapes. Interestingly, a small cylindrical protrusion at the center of the mask can produce exactly the same pattern as a large, flat, circular protrusion. The initial film thickness or the thickness ratio of the polymer layer to the air gap plays an important role in determining the final pattern formed. Finally, we demonstrate, by two simple examples, that the simulations can provide insights on "smart" mask designs for producing large areas of well-ordered patterns.  相似文献   
937.
The interactions of nucleic acids and cationic surfactants (cetylpyridine bromide (CPB) and cetyltrimethylammonium bromide (CTMAB)) in aqueous solution have been studied using the techniques of resonance light scattering (RLS) spectroscopy, the absorption spectroscopy, zeta potential assay and NMR assignment measurement. It is considered that CPB or CTMAB can assemble on the surface of nucleic acid via electrostatic and hydrophobic forces, which results in the formation of large associate of nucleic acid-cationic surfactant and RLS enhancement of nucleic acid. Besides these forces, the pi-pi stacking force between CPB and nucleic acid also exists in the associate. In comparison with CTMAB, CPB has larger enhancement on RLS of nucleic acid, which is attributed to that the enhancement of the former is only due to the absorption of the bases of nucleic acid, while the enhancement of the latter is own to the synergetic resonance caused by the absorption of both bases of nucleic acid and the pyridyl in CPB. These results have important implication for understanding the influence of surfactants on nucleic acid functionality in life science.  相似文献   
938.
Treatment of 5-trimethylsilylthebaine with L-Selectride gave rise to a rearrangement to 10-trimethylsilylbractazonine through migration of the phenyl group, whereas treatment of thebaine with strong Lewis acids is known to lead to a similar rearrangement through migration of the alkyl bridge to give, after reduction, (+)-neodihydrothebaine. It is suggested that the rearrangement of the alkyl group of thebaine is favored due to the formation of a tertiary benzylic cation. However, for 5-trimethylsilylthebaine, the lithium ion of L-Selectride acts as the Lewis acid and the beta-silyl effect dominates in the stabilization of any positive charge. This rearrangement provides a clear example of the greater relative migratory aptitude of phenyl groups over alkyl groups, and provides an efficient synthesis of (+)-bractazonine from thebaine.  相似文献   
939.
The structure and anodic performance of boron-doped and undoped mesocarbon microbeads (MCMBs) have been comparatively studied and the results obtained by XPS, XRD, SEM, Raman spectroscopy and electrochemical measurements are discussed. It is found that boron doping introduces a depressed d 002 spacing and the larger amount of "unorganized carbon", which induces vacancy formation in the graphite planes and leads to a quite different morphology from that of the undoped material. Electrochemical charge/discharge cycle tests indicated that after boron doping the lithium intercalation was carried through at a somewhat higher potential, being attended by greater irreversible capacity loss. Electronic Publication  相似文献   
940.
测定了Pt-Sn型催化剂浸渍状态下的Sn-119、Pt-195的多核核磁共振。当SnCl2/DCl溶液体系中加入H2PtCl6以后,出现了Sn(Ⅳ)和另外一种Sn(Ⅱ)的构型,Sn-119峰向高场位移,说明部分Sn(Ⅱ)被氧化成Sn(Ⅳ),H2PtCl6的量对这种氧化性影响较小。而H2PtCl6/D2O溶液体系中加入SnCl2以后部分Pt(Ⅳ)被还原成Pt(Ⅱ),随着SnCl2量的增加,Pt(Ⅱ)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号