全文获取类型
收费全文 | 113313篇 |
免费 | 20736篇 |
国内免费 | 10060篇 |
专业分类
化学 | 92564篇 |
晶体学 | 1078篇 |
力学 | 5505篇 |
综合类 | 465篇 |
数学 | 10984篇 |
物理学 | 33513篇 |
出版年
2024年 | 296篇 |
2023年 | 1707篇 |
2022年 | 2942篇 |
2021年 | 3255篇 |
2020年 | 4298篇 |
2019年 | 5336篇 |
2018年 | 3642篇 |
2017年 | 3165篇 |
2016年 | 6799篇 |
2015年 | 6910篇 |
2014年 | 7505篇 |
2013年 | 9399篇 |
2012年 | 9862篇 |
2011年 | 9196篇 |
2010年 | 7522篇 |
2009年 | 7293篇 |
2008年 | 7234篇 |
2007年 | 6158篇 |
2006年 | 5509篇 |
2005年 | 4948篇 |
2004年 | 4041篇 |
2003年 | 3439篇 |
2002年 | 4147篇 |
2001年 | 3199篇 |
2000年 | 2901篇 |
1999年 | 2096篇 |
1998年 | 1473篇 |
1997年 | 1389篇 |
1996年 | 1374篇 |
1995年 | 1115篇 |
1994年 | 991篇 |
1993年 | 810篇 |
1992年 | 722篇 |
1991年 | 633篇 |
1990年 | 533篇 |
1989年 | 399篇 |
1988年 | 351篇 |
1987年 | 283篇 |
1986年 | 261篇 |
1985年 | 213篇 |
1984年 | 151篇 |
1983年 | 111篇 |
1982年 | 84篇 |
1981年 | 70篇 |
1980年 | 65篇 |
1979年 | 34篇 |
1978年 | 32篇 |
1977年 | 42篇 |
1976年 | 32篇 |
1973年 | 29篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Zi‐Cai Li Tzon‐Tzer Lu Hung‐Tsai Huang Alexander H.‐D. Cheng 《Numerical Methods for Partial Differential Equations》2007,23(1):93-144
In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007 相似文献
82.
Francisco‐Javier Sayas 《Numerical Methods for Partial Differential Equations》2003,19(5):555-570
This article presents and analyzes a simple method for the exterior Laplace equation through the coupling of finite and boundary element methods. The main novelty is the use of a smooth parametric artificial boundary where boundary elements fit without effort together with a straight approximate triangulation in the bounded area, with the coupling done only in nodes. A numerically integrated version of the algorithm is also analyzed. Finally, an isoparametric variant with higher order is proposed. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 555–570, 2003 相似文献
83.
Sheng‐Huei Hsiao Chien‐Wei Chen Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3302-3313
Two new diamines, 2,4‐diaminotriphenylamine ( 3 ) and N‐(2,4‐diaminophenyl)carbazole ( 4 ), were synthesized via the cesium fluoride‐mediated aromatic substitution reactions of 1‐fluoro‐2,4‐dinitrobenzene with diphenylamine and carbazole, followed by palladium‐catalyzed hydrazine reduction. Amorphous and soluble aramids having pendent diphenylamino and carbazolyl groups were prepared by the phosphorylation polycondensation of aromatic dicarboxylic acids with diamines 3 and 4 , respectively. The aramids derived from diamine 3 had sufficiently high molecular weights to permit the casting of flexible and tough films. They exhibited excellent mechanical properties and moderately high softening temperatures in the 221–298 °C range. However, the reactions of diamine 4 with aromatic diacids gave relatively lower molecular weights products that could not afford flexible films. For a comparative purpose, the parent aramids derived from m‐phenylenediamine and aromatic diacids were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3302–3313, 2004 相似文献
84.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004 相似文献
85.
Ke Sha Dongshuang Li Yapeng Li Xiaotian Liu Shuwei Wang Jingqi Guan Jingyuan Wang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(22):5037-5049
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007 相似文献
86.
87.
Zhitian Liu Lei Wang Junwu Chen Feng Wang Xiaoying Ouyang Yong Cao 《Journal of polymer science. Part A, Polymer chemistry》2007,45(5):756-767
2,5‐Bis(2‐bromofluorene‐7‐yl)silole was prepared by a modified one‐pot synthesis with a reverse addition procedure, from which novel silole‐containing polyfluorenes with binary random and alternating structures (silole contents between 4.5 and 25% and high Mw up to 509 kDa were successfully synthesized. The well‐defined repeating unit of the alternating copolymer comprises a terfluorene and a silole ring. Optoelectronic properties including UV absorption, electrochemistry, photoluminescence (PL), and electroluminescence (EL) of the copolymers were examined. The different excitation energy transfers from fluorene to silole of the copolymers in solution and in the solid state were compared. The films of the copolymers showed silole‐dominant green emissions with high absolute PL quantum yields up to 83%. EL devices of the copolymers with a configuration of ITO/PEDOT/copolymer/Ba/Al displayed exclusive silole emissions peaked at around 543 nm and the highest EL efficiency was achieved with the alternating copolymer. Using the alternating copolymer and poly(9,9‐dioctylfluorene) as the blend‐type emissive layer, a maximum external quantum efficiency of 1.99% (four times to that of the neat film) was realized, which was a high efficiency so far reported for silole‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 756–767, 2007 相似文献
88.
Nano-sized Ru metals have been prepared by the chemical reduction of ruthenium chloride and ruthenium hydroxide. Sodium borohydride was used as a reducing agent. The samples have been characterized by elemental analysis, X-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The preparation method greatly affects the composition and surface area of the material. All the samples show nanosized particles. However, samples prepared by reduction of ruthenium hydroxide had a lower surface area and larger particle size than those prepared by reduction of ruthenium chloride. Residual amount of boron was present in the samples. The samples demonstrate amorphous structure. 相似文献
89.
Xiao‐Hui Liu Yan‐Guo Li Ying Lin Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2007,45(7):1272-1281
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007 相似文献
90.
T. Ramanathan S. Stankovich D. A. Dikin H. Liu H. Shen S. T. Nguyen L. C. Brinson 《Journal of Polymer Science.Polymer Physics》2007,45(15):2097-2112
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007 相似文献