首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   45篇
  国内免费   96篇
化学   491篇
晶体学   10篇
力学   61篇
综合类   9篇
数学   44篇
物理学   173篇
  2024年   1篇
  2023年   19篇
  2022年   32篇
  2021年   42篇
  2020年   31篇
  2019年   22篇
  2018年   21篇
  2017年   13篇
  2016年   30篇
  2015年   21篇
  2014年   27篇
  2013年   32篇
  2012年   47篇
  2011年   74篇
  2010年   30篇
  2009年   42篇
  2008年   40篇
  2007年   30篇
  2006年   47篇
  2005年   28篇
  2004年   30篇
  2003年   20篇
  2002年   15篇
  2001年   5篇
  2000年   22篇
  1999年   11篇
  1998年   7篇
  1997年   13篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   4篇
  1983年   1篇
  1981年   1篇
  1957年   1篇
排序方式: 共有788条查询结果,搜索用时 140 毫秒
11.
Fossil fuels are expected to be the major source of energy for the next few decades. However, combustion of nonrenewable resources leads to the release of large quantities of CO2, the primary greenhouse gas. Notably, the concentration of CO2 in the atmosphere is increasing annually at an astounding rate. Electrochemical CO2 reduction (ECR) to value-added fuels and chemicals using electricity from intermittent renewable energy sources is a carbon-neutral method to alleviate anthropogenic CO2 emissions. Despite the steady progress in the selective generation of C1 products (CO and formic acid), the production of multi-carbon species still suffers from low selectivity and efficiency. As an ECR product, ethylene (C2H4) has a higher energy density than do C1 species and is an important industrial feedstock in high demand. However, the conversion of CO2 to C2H4 is plagued by low productivity and large overpotential, in addition to the severe competing hydrogen evolution reaction (HER) during the ECR. To address these issues, the design and development of advanced electrocatalysts are critical. Here, we demonstrate fine-tuning of ECR to C2H4 by taking advantage of the prominent interaction of Cu with shape-controlled CeO2 nanocrystals, that is, cubes, rods, and octahedra predominantly covered with (100), (110), and (111) surfaces, respectively. We found that the selectivity and activity of the ECR depended strongly on the exposed crystal facets of CeO2. The overall ECR Faradaic efficiency (FE) over Cu/CeO2(110) (FE ≈ 56.7%) surpassed that of both Cu/CeO2(100) (FE ≈ 51.5%) and Cu/CeO2(111) (FE ≈ 48.4%) in 0.1 mol·L-1 KHCO3 solutions with an H-type cell. This was in stark contrast to the exclusive occurrence of the HER over pure carbon paper, CeO2(100), CeO2(110), and CeO2(111). In particular, the FE toward C2H4 formation and the partial current density increased in the sequence Cu/CeO2(111) < Cu/CeO2(100) < Cu/CeO2(110) within applied bias potentials from -1.00 to -1.15 V (vs. the reversible hydrogen electrode), reaching 39.1% over Cu/CeO2(110) at a mild overpotential (1.13 V). The corresponding values for Cu/CeO2(100) and Cu/CeO2(111) were FEC2H4 ≈ 31.8% and FEC2H4 ≈ 29.6%, respectively. The C2H4 selectivity was comparable to that of many reported Cu-based electrocatalysts at similar overpotentials. Furthermore, the FE for C2H4 remained stable even after 6 h of continuous electrolysis. The superior ECR activity of Cu/CeO2(110) to yield C2H4 was attributed to the metastable (110) surface, which not only promoted the effective adsorption of CO2 but also remarkably stabilized Cu+, thereby boosting the ECR to produce C2H4. This work offers an alternative strategy to enhance the ECR efficiency by crystal facet engineering.  相似文献   
12.
The physical processes underlying micro-electrospray (micro-ES) performance were investigated using a stainless steel (SS) emitter with a blunt tip. Sheathless micro-ES could be generated at a blunt SS tip without any tapering or sanding if ESI conditions were optimized. The Taylor cone was found to shrink around the inner diameter of the SS tubing, which permitted a low flow rate of 150 nL/min for sheathless microspray on the blunt tip (100 microm i.d. x 400 microm o.d.). It is believed that the wettability and/or hydrophobicity of SS tips are responsible for their micro-ES performance. The outlet orifice was further nipped to reduce the size of the spray cone and limit the flow rate to 50-150 nL/min, resulting in peptide detection down to attomole quantities consumed per spectrum. The SS emitter was also integrated into a polymethylmethacrylate microchip and demonstrated satisfactory performance in the analysis and identification of a myoglobin digest.  相似文献   
13.
Rapid chiral analysis has become one of the important aspects of academic and industrial research. Here we describe a new strategy based on liquid-phase cyclic chemiluminescence (CCL) for rapid resolution of enantiomers and determination of enantiomeric excess (ee). A single CCL measurement can acquire multistage signals that provide a unique way to examine the intermolecular interactions between chiral hosts and chiral guests, because the lifetime (τ) of the multistage signals is a concentration-independent and distinguishable constant for a given chiral host–guest system. According to the τ values, CCL allows discrimination between a wide range of enantiomeric pairs including chiral alcohols, amines and acids by using only one chiral host. Even the chiral systems hardly distinguished by nuclear magnetic resonance and fluorescence methods can be distinguished easily by CCL. Additionally, the τ value of a mixture of two enantiomers is equal to the weighted average of each enantiomer, which can be used for the direct determination of ee without the need to separate the chiral mixture and create calibration curves. This is extremely crucial for the cases without readily available enantiomerically pure samples. This strategy was successfully applied to monitoring of the Walden inversion reaction and analysis of chiral drugs. The results were in good agreement with those obtained by high-performance liquid chromatography, indicating the utility of CCL for routine quick ee analysis. Mechanism study revealed that the τ value is possibly related to the activity of the chiral substance to catalyze a luminol–H2O2 reaction. Our research provides an unprecedented and general protocol for chirality differentiation and ee determination, which is anticipated to be a useful technology that will find wide application in chirality-related fields, particularly in asymmetric synthesis and the pharmaceutical industry.

Rapid chiral analysis has become one of the important aspects of academic and industrial research.  相似文献   
14.
15.

Two functional polyurethanes (P1 and P2) bearing a large π electron conjugated chromophoric pendant were synthesized and characterized by FT‐IR, 1H‐NMR and UV‐Vis absorption spectra. Their optical limiting properties were evaluated. The results show that P1 and P2 show novel optical limiting properties, which are assigned to a long π electron conjugated chromophoric pendant. It was found that their optical limiting properties were affected simultaneously by solution concentration and P2 displays a better optical limiting property than P1 at the same solution transmittance, although that P1 has larger χ(3) (4.28×10?11 esu) than P2 (0.87×10?11 esu), and their optical limiting mechanism is investigated.  相似文献   
16.
Withaferin A (WA) is one of the major bioactive steroidal lactones with extensive pharmacological activities present in the plant Withania somnifera. The absolute oral bioavailability of WA remains unknown and human‐related in vitro data are not available. Therefore, in the present study, the absolute oral bioavailability of WA in male rats and the in vitro screening of absorption factors by Q‐trap and LC–MS/MS analysis were conducted to explore possible clinical properties of WA. The developed and validated analytical methods were successfully applied to the pharmacokinetic studies and in vitro measurement of WA. The oral bioavailability was determined to be 32.4 ± 4.8% based on intravenous (5 mg/kg) and oral (10 mg/kg) administrations of WA in male rats. The in vitro results showed that WA could be easily transported across Caco‐2 cells and WA did not show as a substrate for P‐glycoprotein. Moreover, the stability of WA was similar between male rat and human in simulated gastric fluid (stable), in intestinal microflora solution (slow decrease) and in liver microsomes (rapid depletion, with a half‐life of 5.6 min). As such, the first‐pass metabolism of WA was further verified by rat intestine‐liver in situ perfusion, revealing that WA rapidly decreased and 27.1% remained within 1 h, while the content of three major metabolites (M1, M4, M5) identified by Q‐trap increased. This perfusion result is consistent with the oral bioavailability results in vivo. The first‐pass metabolism of WA might be the main barrier in achieving good oral bioavailability in male rats and it is predicted to be similar in humans. This study may hold clinical significance.  相似文献   
17.
A fast, sensitive and reliable ultra fast liquid chromatography‐tandem mass spectrometry (UFLC‐MS/MS) method has been developed and validated for simultaneous quantitation of polygalaxanthone III (POL), ginsenoside Rb1 (GRb1), ginsenoside Rd (GRd), ginsenoside Re (GRe), ginsenoside Rg1 (GRg1) and tumulosic acid (TUM) in rat plasma after oral administration of Kai‐Xin‐San, which plays an important role for the treatment of Alzheimer's disease (AD). The plasma samples were extracted by liquid–liquid extraction using ethyl acetate–isopropanol (1:1, v/v) with salidrdoside as internal standard (IS). Good chromatographic separation was achieved using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water. The tandem mass spectrometric detection was performed in multiple reaction monitoring mode on 4000Q UFLC‐MS/MS system with turbo ion spray source in a negative and positive switching ionization mode. The lower limits of quantification were 0.2–1.5 ng/ml for all the analytes. Both intra‐day and inter‐day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean absolute extraction recoveries of analytes and IS from rat plasma were all more than 60.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in normal and AD rat plasma. The results indicated that no significant differences in pharmacokinetic parameters of GRe, GRg1 and TUM were observed between the two groups, while the absorption of POL and GRd in AD group were significantly higher than those in normal group; moreover, the GRb1 absorbed more rapidly in model group. The different characters of pharmacokinetics might be caused by pharmacological effects of the analytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
A large number of microscale structures have been used to elaborate flowing control or complex biological and chemical reaction on microfluidic chips. However, it is still inconvenient to fabricate microstructures with different heights (or depths) on the same substrate. These kinds of microstructures can be fabricated by using the photolithography and wet-etching method step by step, but involves time-consuming design and fabrication process, as well as complicated alignment of different masters. In addition, few existing methods can be used to perform fabrication within enclosed microfluidic networks. It is also difficult to change or remove existing microstructures within these networks. In this study, a magnetic-beads-based approach is presented to build microstructures in enclosed microfluidic networks. Electromagnetic field generated by microfabricated conducting wires (coils) is used to manipulate and trap magnetic beads on the bottom surface of a microchannel. These trapped beads are accumulated to form a microscale pile with desired shape, which can adjust liquid flow, dock cells, modify surface, and do some other things as those fabricated microstructures. Once the electromagnetic field is changed, trapped beads may form new shapes or be removed by a liquid flow. Besides being used in microfabrication, this magnetic-beads-based method can be used for novel microfluidic manipulation. It has been validated by forming microscale dam structure for cell docking and modified surface for cell patterning, as well as guiding the growth of neurons.  相似文献   
19.
Synergistically taking the advantage of distinctive porous matrix, luminophore and functional nanoparticles, we prepared functional nanocomposite hydrogel combining the hydrophilic three-dimensional network of hydrogels as matrix for the adsorption of luminophore, Ru(bpy)32+, and in situ grown gold nanoparticles (AuNPs) as the conductive. Interestingly, the designed nanocomposite hydrogel shows external pressure resposnsive properties, which precisely tune the distance between the AuNPs becomes shorter, resulting in a remarkable amplification of electrochemiluminescence (ECL) signals. Additionally, differing from the poor stability of conventional ECL, uniform dispersion of the Ru(bpy)32+ over nanocomposite hydrogel significantly enhanced the long term stability of ECL.  相似文献   
20.
DNA methyltransferase (DNA MTase) can act as biomarker for many diseases and it is important to develop some new methods for sensitive detection of DNA MTase. In this work, a highly efficient electrochemiluminescence (ECL) sensor had been designed for detection of DNA MTase based on Ru(phen)32+ loaded double strand DNA (dsDNA- Ru(phen)32+) as signal tags. Ru(phen)32+ had been efficiently embed in the dsDNA produced through a simple hybridization chain reaction. First, a hairpin probe was designed, which can be specifically recognized by Dam MTase and modified with -SH at one end. It was modified on the surface of gold electrode by -SH as an immobilization probe (IP). This IP will be methylated in the present of Dam MTase and digested by DpnI following. Results in the release of capture probe (CP) which remains on the surface of gold electrode. The CP can hybridize with the single stand part of the dsDNA- Ru(phen)32+ and make the immobilization of ECL tags on the electrode surface, which results in a strong ECL signals detected. However, without the effect of Dam MTase, the hairpin structure of IP remains stable and cannot capture signal tags, and can only detecte weak ECL signals. The biosensor can detect the activity of Dam MTase in the concentration range of 0.01 U/mL to 20 U/mL with the ECL intensity and the logarithm of the concentration have a linear relationship, and the detection limit is calculated to be 7.6 mU/mL. The developed sensor has the ability to specifically detect Dam MTase, which can be differentiated from other types of DNA MTase. In addition, the designed method has good applicability to detect Dam MTase activity in serum samples and been applied to detect its inhibitor with high efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号