首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7853篇
  免费   1559篇
  国内免费   944篇
化学   5585篇
晶体学   116篇
力学   450篇
综合类   91篇
数学   860篇
物理学   3254篇
  2024年   33篇
  2023年   246篇
  2022年   390篇
  2021年   382篇
  2020年   452篇
  2019年   426篇
  2018年   355篇
  2017年   326篇
  2016年   446篇
  2015年   454篇
  2014年   483篇
  2013年   651篇
  2012年   727篇
  2011年   714篇
  2010年   511篇
  2009年   468篇
  2008年   448篇
  2007年   401篇
  2006年   344篇
  2005年   303篇
  2004年   259篇
  2003年   215篇
  2002年   185篇
  2001年   156篇
  2000年   111篇
  1999年   140篇
  1998年   107篇
  1997年   93篇
  1996年   92篇
  1995年   76篇
  1994年   65篇
  1993年   44篇
  1992年   35篇
  1991年   46篇
  1990年   41篇
  1989年   27篇
  1988年   22篇
  1987年   18篇
  1986年   16篇
  1985年   13篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1978年   2篇
  1964年   1篇
  1959年   2篇
  1957年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Two new pentaborates [M(dap)3][B5O6(OH)4]2·H2O (M = Co (1) and Ni (2); dap = 1,2-diaminopropane) have been hydrothermally synthesized. Both structures were determined by single crystal X-ray diffraction and further characterized by elemental analysis, FT-IR, thermogravimetric analysis and photoluminescence spectroscopy. Two compounds are isostructural and consist of isolated pentaborate [B5O6(OH)4]? anions and [M(dap)3]2+ complex cations. The anionic [B5O6(OH)4]? groups are linked by extensive hydrogen bonds to form a 3-D supramolecular framework with large channels, in which the transition-metal complex templates are located. The luminescent properties of 1 and 2 were studied, and blue luminescence occurs with an emission maximum at 405 and 408 nm upon excitation at 332 and 328 nm respectively. Crystal data: 1, monoclinic, space group P21/c (No. 14), a = 9.7159(5) Å, b = 29.3372(19) Å, c = 11.5121(6) Å, β = 103.286(5)°, V = 3193.6(3) Å3, Z = 4; 2, monoclinic, space group P21/c, a = 9.7264(4) Å, b = 29.3810(16) Å, c = 11.5185(6) Å, β = 103.249(4)°, V = 3204.0(3) Å3, Z = 4.  相似文献   
82.
CaFe2O4/MgFe2O4 nanowires with heterostructure had been successfully synthesized by electrospinning method. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X‐Ray diffraction (XRD), UV–Vis diffuse reflectance spectra (UV‐Vis DR) and Environment scanning electron microscopy (ESEM). The novel CaFe2O4/MgFe2O4 nanowires exhibit an enhanced photocatalytic activity for degrading of tetracycline (TC) under visible light. Compared with bare CaFe2O4 or MgFe2O4 samples, the prepared CaFe2O4/MgFe2O4 (Ca:Mg:Fe = 3:2:10) composited nanowires show the best photocatalytic performance with a degradation efficiency of 40% after 150 min reaction time. This enhancement is attributed to the heterostructure of CaFe2O4/MgFe2O4 nanowires, which effectively repress the recombination of photo‐generated electrons and holes. Based on heterostructure and energy band positions, the enhancement of mechanism under visible‐light enhances the photocatalytic activity.  相似文献   
83.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li-S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal-based pre-catalysts (Co4N) in working Li-S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single-crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all-phase polysulfide-involving reactions. Consequently, Co4N enables stable operation of high-rate (10 C, 16.7 mA cm−2) and electrolyte-starved (4.7 μL mgS−1) Li-S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low-valence metal compounds.  相似文献   
84.
Mordenite (MOR) has demonstrated potential as a catalyst for alkylation due to high variability, intrinsic porosity, and outstanding stability. However, the contact probability of benzene and methanol has been limited by typical layered structures of MOR and there is no connection between layers. Here, we report the preparedness of H-MOR via a sequential post-treatment method based on a commercial MOR. H-MOR sample had appeared lattice imperfections inferred from characterization means. The samples were tested with benezene methylation reaction. Results show that the high conversion of benzene and the high selectivity of toluene were obtained from the miracle role of lattice imperfections in the H-MOR sample. Sequentially, based on the study of all catalyst structure and physical properties, a plausible reaction mechanism for the selectivity of the desired toluene was proposed.  相似文献   
85.
A detailed theoretical study on the reaction mechanisms for the formations of H2O2 + 3O2 from the self-reaction of HO2 radicals under the effect of NH3, H3N···H2O, and H2SO4 catalysts was performed using the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ method. The rate constant was computed using canonical variational transition state theory (CVT) with small curvature tunneling (SCT). Our results indicate that NH3-, H3N···H2O-, and H2SO4-catalyzed reactions could proceed through both one-step and stepwise routes. Calculated rate constants show that the catalyzed routes in the presence of the three catalysts all prefer stepwise pathways. Compared to the catalytic efficiency of H2O, the efficiencies of NH3, H3N···H2O, and H2SO4 are much lower due to their smaller relative concentrations. The present results have provided a definitive example of how basic and acidic catalysts influence the atmospheric reaction of HO2 + HO2 → H2O2 + 3O2. These results further encourage one to consider the effects of basic and acidic catalysts on the related atmospheric reactions. Thus, the present investigation should have broad implications in the gas-phase reactions of the atmosphere.  相似文献   
86.
A 1,10-phenanthroline based polymer named PPPhen(i.e., polymer from pyrene 1,10-phenanthrolin) was prepared by the Friedel-Crafts reaction of 1,10-phenanthroline and pyrene cross-linked with dimethoxymethane. The related Pd catalyst Pd@PPPhen was prepared by supporting Pd nanoparticles(NPs) on the PPPhen material. PPPhen and Pd@PPPhen were characterized by means of scanning electron microscopy(SEM), transmission electron microscopy, N2 adsorption-desorption, Fourier-transform infrared and X-ray photoelectron spectroscopy analyses. The results showed that PPPhen polymer was highly porous and that the phenanthroline group can enhance the stability of the Pd nanoparticles. Pd@PPPhen also exhibited good catalytic activity in the aerobic oxidation of alcohols to aldehydes and ketones, and Pd@PPPhen was recyclable with durable activity and retentive structures.  相似文献   
87.
Perovskite solar cells (PSCs) are a promising photovoltaic technology for stretchable applications because of their flexible, light‐weight, and low‐cost characteristics. However, the fragility of crystals and poor crystallinity of perovskite on stretchable substrates results in performance loss. In fact, grain boundary defects are the “Achilles’ heel” of optoelectronic and mechanical stability. We incorporate a self‐healing polyurethane (s‐PU) with dynamic oxime–carbamate bonds as a scaffold into the perovskite films, which simultaneously enhances crystallinity and passivates the grain boundary of the perovskite films. The stretchable PSCs with s‐PU deliver a stabilized efficiency of 19.15 % with negligible hysteresis, which is comparable to the performance on rigid substrates. The PSCs can maintain over 90 % of their initial efficiency after 3000 hours in air because of their self‐encapsulating structure. Importantly, the self‐healing function of the s‐PU scaffold was verified in situ. The s‐PU can release mechanical stress and repair cracks at the grain boundary on multiple levels. The devices recover 88 % of their original efficiency after 1000 cycles at 20 % stretch. We believe that this ingenious growth strategy for crystalline semiconductors will facilitate development of flexible and stretchable electronics.  相似文献   
88.
Design of stable adsorbents for selective gold recovery with large capacity and fast adsorption kinetics is of great challenge, but significant for the economy and the environment. Herein, we show the design and preparation of an irreversible amide‐linked covalent organic framework (COF) JNU‐1 via a building block exchange strategy for efficient recovery of gold. JNU‐1 was synthesized through the exchange of 4,4′‐biphenyldicarboxaldehyde (BA) in mother COF TzBA consisting of 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)trianiline (Tz) and BA with terephthaloyl chloride. The irreversible amide linked JNU‐1 gave good stability, unprecedented fast kinetics, excellent selectivity and outstanding adsorption capacity for gold recovery. X‐ray photoelectron spectroscopy along with thermodynamic study and quantum mechanics calculation reveals that the excellent performance of JNU‐1 for gold recovery results from the formation of hydrogen bonds C(N)?H???Cl and coordinate interaction of O and Au. The rational design of irreversible bonds as both inherent linkage and functional groups in COFs is a promising way to prepare stable COFs for diverse applications.  相似文献   
89.
Yuan  Haifeng  Zhao  Yan  Yang  Chan  Zhang  Cheng  Yang  Yue  Meng  Hongmin  Huan  Shuangyan  Song  Guosheng  Zhang  Xiaobing 《中国科学:化学(英文版)》2020,63(7):924-935
For chemotherapy, drug delivery systems often suffer from the inefficient drug loading capability, which usually cause systems toxicity and extra burden to excrete carrier itself. Moreover, the cancer therapeutic efficacy is also greatly limited by the specificity of tumor microenvironment for reactive oxygen species(ROS) based cancer therapeutic strategy(e.g., chemodynamic therapy). Herein, we have developed metal-drug coordination nanoplatform that can not only be responsive to tumor microenvironment but also modulate it, so as to achieve efficient treatment of cancer. Excitingly, by employing small molecule drug(6-thioguanine) as ligand copper ions, we achieve a high drug loading rate(60.1%) and 100% of utilization of metal-drug coordination nanoplatform(Cu-TG). Interestingly, Cu-TG possessed high-efficiently horseradish peroxidase-like, glutathione peroxidase-like and catalase-like activity. Under the tumor microenvironment, Cu-TG exhibited the self-reinforcing circular catalysis that is able to amplify the cellular oxidative stress, inducing notable cancer cellular apoptosis. Moreover, Cu-TG could be activated with glutathione(GSH) and facilitated for GSH triggered 6-TG release, higher selective therapeutic effect toward cancer cells, and GSH activated T_1 weight-magnetic resonance imaging. Based on the above properties, Cu-TG exhibited magnetic resonance imaging(MRI) guiding, efficient and synergistic combination of chemodynamic and chemotherapy with self-reinforcing therapeutic outcomes in vivo.  相似文献   
90.
Silica-supported polystannazane–copper complex has been prepared and used as a catalyst for the oxidation of methanol. The results showed that the catalyst could catalyze the oxidation of methanol to formaldehyde at a high yield and selectivity at 30°C and under 1 atm mild conditions. The N/Cu mole ratio in the complex, temperature and the amount of NaOH additive had much influence on the catalytic activity. The complex was stable during the reaction and could be used repeatedly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号