首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23062篇
  免费   4398篇
  国内免费   3458篇
化学   16839篇
晶体学   350篇
力学   1429篇
综合类   330篇
数学   2832篇
物理学   9138篇
  2024年   41篇
  2023年   406篇
  2022年   828篇
  2021年   781篇
  2020年   997篇
  2019年   956篇
  2018年   827篇
  2017年   802篇
  2016年   1095篇
  2015年   1160篇
  2014年   1416篇
  2013年   1751篇
  2012年   2094篇
  2011年   2225篇
  2010年   1627篇
  2009年   1607篇
  2008年   1734篇
  2007年   1522篇
  2006年   1393篇
  2005年   1155篇
  2004年   953篇
  2003年   727篇
  2002年   750篇
  2001年   641篇
  2000年   509篇
  1999年   453篇
  1998年   348篇
  1997年   340篇
  1996年   294篇
  1995年   245篇
  1994年   229篇
  1993年   169篇
  1992年   123篇
  1991年   134篇
  1990年   116篇
  1989年   80篇
  1988年   78篇
  1987年   65篇
  1986年   47篇
  1985年   35篇
  1984年   30篇
  1983年   30篇
  1982年   28篇
  1981年   18篇
  1980年   16篇
  1979年   7篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
By taking advantage of UV‐Raman spectroscopy and high‐resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α‐Ga2O3 and then into β‐Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α‐Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α‐Ga2O3 into β‐Ga2O3, the nucleation of β‐Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β‐Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α‐Ga2O3 single particles can be easily tuned and a particle with an α@β core–shell phase structure has been obtained.  相似文献   
992.
The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr? Mn? carbonyl clusters, [E2CrMn2(CO)9]2? (E=S, 1 ; Se, 2 ). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal‐bipyramidal structure, with the CrMn2 triangle axially capped by two μ3‐E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9]2? ( 3 ), was obtained from the ring‐closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18]2? ( 4 ). Upon bubbling with CO, clusters 2 and 3 were readily converted into square‐pyramidal clusters, [E2CrMn2(CO)10]2? (E=Se, 5 ; Te, 6 ), accompanied with the cleavage of one Cr? Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue ( 5 ) was spectroscopically proposed to be diamagnetic, as verified by TD‐DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn? Mn bond to produce a new arachno‐cluster, [Te2CrMn2(CO)11]2? ( 7 ). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.  相似文献   
993.
A high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization tandem mass spectrometry (HPLC-PAD–ESI-MS) method has been developed for the simultaneous identification and quantification of active compounds (rutin and quercetin) contained in Traditional Chinese Medicine (TCM) Euonymus alatus (Thunb.) Siebold (EAS). The herb samples from ten main origins and five medicinal portions (leaf, fruit, stem, pterygium and root) were investigated. The separation was performed on a Shim C18 column at 30 °C with an isocratic elution. Methanol (A) and water (0.5% methanoic acid, v/v) (B) were used as mobile phases. The recoveries of the two compounds were 100.184% and 100.417%, respectively, and all of them showed good linearity (r2 ? 0.9993) in relatively wide concentration ranges. The developed method was applied to identify and quantify the two major active compounds in the collected herb samples, and the results indicated that contents of the two compounds in EAS varied significantly from habitat to habitat. It was demonstrated that the proposed method was helpful for the quality evaluation of EAS.  相似文献   
994.
The lanthanum(III) complexes tris(3,5‐diphenylpyrazolato‐κ2N,N′)tris(tetrahydrofuran‐κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C15H11N2)3(C4H8O)3]·C4H8O, (I), and tris(3,5‐diphenyl‐1,2,4‐triazolato‐κ2N1,N2)tris(tetrahydrofuran‐κO)lanthanum(III), [La(C14H10N3)3(C4H8O)3], (II), both contain LaIII atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer‐distorted octahedral geometry, while complex (II) has a fac‐distorted configuration. The difference in the coordination geometries and the existence of asymmetric La—N bonding in the two complexes is associated with intramolecular C—H...N/O interactions between the ligands.  相似文献   
995.
In the title CuII complex, [Cu(C19H14O3P)2(C3H7NO)(H2O)2], the molecule is bisected by a twofold axis relating the two 2‐(diphenylphosphoryl)benzoate (ODPPB) ligands. The asymmetric unit consists of a CuII metal centre on the symmetry axis, an ODPPB ligand, one water ligand and one dimethylformamide (DMF) ligand (disordered around the twofold axis). The CuII ion has fivefold coordination provided by two carboxylate O atoms from two ODPPB ligands, two O atoms from two coordinated water molecules and another O atom from a (disordered) DMF molecule, giving a CuO5 square‐pyramidal coordination geometry. The ODPPB ligand adopts a terminal monocoordinated mode with two free O atoms forming two strong intramolecular hydrogen bonds with the coordinated water molecules, which may play a key role in the stability of the molecular structure, as shown by the higher release temperature for the coordinated water molecules than for the coordinated DMF molecule. The optical absorption properties of powder samples of the title compound have also been studied.  相似文献   
996.
A one‐dimensional AgI coordination complex, catena‐poly[[silver(I)‐μ‐{2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol‐κ2N2:N3}] perchlorate monohydrate], {[Ag(C19H15N3O)]ClO4·H2O}n, was synthesized by the reaction of 2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol (L) with silver perchlorate. In the complex, the L ligands are arranged alternately and link AgI cations through one benzimidazole N atom and the N atom of the pyridine ring, leading to an extended zigzag chain structure. In addition, the one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions and π–π stacking interactions. The complex exhibits photoluminescence in acetonitrile solution, with an emission maximum at 390 nm, and investigation of the thermal stability reveals that the network structure is stable up to 650 K.  相似文献   
997.
Nano-montmorillonites belong to aluminosilicate clay minerals with innocuity, high specific surface area, ion exchange, and favorable adsorption property. Due to the excellent properties, montmorillonites can be used as labels for the electrochemical immunosensors. In this study, nano-montmorillonites were converted to sodium montmorillonites (Na-Mont) and further utilized for the immobilization of thionine (TH), horseradish peroxidase (HRP) and the secondary anti-zeranol antibody (Ab2). The modified particles, Na-Mont-TH-HRP-Ab2 were used as labels for immunosensors to detect zeranol. This protocol was used to prepare the immunosensor with the primary antibody (Ab1) immobilized onto the nanoporous gold films (NPG) modified glassy carbon electrode (GCE) surface. Within zeranol concentration range (0.01–12 ng mL−1), a linear calibration plot (Y = 0.4326 + 8.713 X, r = 0.9996) was obtained with a detection limit of 3 pg mL−1 under optimal conditions. The proposed immunosensor showed good reproducibility, selectivity, and stability. This new type of immunosensors with montmorillonites and NPG as labels may provide potential applications for the detection of zeranol.  相似文献   
998.
Tunable polymerization of ionic liquid on the surfaces of multi-walled carbon nanotubes (MWCNTs) was achieved by a mild thermal-initiation-free radical reaction of 3-ethy-1-vinylimidazolium tetrafluoroborate in the presence of MWCNTs. Successful modification of polymeric ionic liquid (PIL) on MWCNTs surfaces (PIL-MWCNTs) was demonstrated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The resulting PIL-MWCNTs possessed unique features of high dispersity in aqueous solution and tunable thickness of PIL layer, due to positive imidazole groups along PIL chains and controllable ionic liquid polymerization by tuning the ratio of precursor. Based on cation-π interaction between the positive imidazole groups on PIL-MWCNTs surface and hydroquinone (HQ) or catechol (CC), excellent discrimination ability toward HQ and CC and improved simultaneous detection performance were achieved. The linear range for HQ and CC were 1.0 × 10−6 to 5.0 × 10−4 M and 1.0 × 10−6 to 4.0 × 10−4 M, respectively. The detection limit for HQ was 4.0 × 10−7 M and for CC 1.7 × 10−7 M (S/N = 3), correspondingly.  相似文献   
999.
Paper-based microfluidic devices have been widely investigated in recent years. Among various detection techniques, colorimetric method plays a very important role in paper-based microfluidic devices. The limitation, however, is also clear: they generally require highly sensitive indicators. In this work, we have developed a novel enrichment-based paper test for the discrimination of heavy-metal ions. Comparing to regular paper-based microfluidic devices, enrichment-based technique showed largely improved sensitivity. Combining with eight pyridylazo compounds and array technologies-based pattern-recognition, we have obtained the discrimination capability of eight different heavy-metal ions at same concentration as low as 50 μM using our enrichment-based pyridylazo compounds array paper. Identification of the heavy-metal ions was readily achieved using a standard chemometric approach. This method can be, of course, used for other analytes as well.  相似文献   
1000.
As an edible and medicinal plant, Coix seed is readily contaminated by more than one group of mycotoxins resulting in potential risk to human health. A reliable and sensitive method has been developed to determine seven mycotoxins (aflatoxins B1, B2, G1, G2, zearalenone, α-zearalenol, and β-zearalenol) simultaneously in 10 batches of Coix seed marketed in China. The method is based on a rapid ultrasound-assisted solid–liquid extraction (USLE) using methanol/water (80/20) followed by immunoaffinity column (IAC) clean-up, on-line photochemical derivatization (PCD), and high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD). Careful optimization of extraction, clean-up, separation and detection conditions was accomplished to increase sample throughput and to attain rapid separation and sensitive detection. Method validation was performed by analyzing samples spiked at three different concentrations for the seven mycotoxins. Recoveries were from 73.5% to 107.3%, with relative standard deviations (RSDs) lower than 7.7%. The intra- and inter-day precisions, expressed as RSDs, were lower than 4% for all studied analytes. Limits of detection and quantification ranged from 0.01 to 50.2 μg kg−1, and from 0.04 to 125.5 μg kg−1, respectively, which were below the tolerance levels for mycotoxins set by the European Union. Samples that tested positive were further analyzed by HPLC tandem electrospray ionization mass spectrometry for confirmatory purposes. This is the first application of USLE-IAC-HPLC-PCD-FLD for detecting the occurrence of multi-class mycotoxins in Coix seed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号