首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2626篇
  免费   285篇
  国内免费   156篇
化学   1967篇
晶体学   25篇
力学   117篇
综合类   1篇
数学   235篇
物理学   722篇
  2024年   14篇
  2023年   98篇
  2022年   194篇
  2021年   157篇
  2020年   164篇
  2019年   173篇
  2018年   161篇
  2017年   115篇
  2016年   177篇
  2015年   178篇
  2014年   190篇
  2013年   238篇
  2012年   263篇
  2011年   248篇
  2010年   162篇
  2009年   122篇
  2008年   131篇
  2007年   107篇
  2006年   60篇
  2005年   33篇
  2004年   18篇
  2003年   10篇
  2002年   16篇
  2001年   5篇
  2000年   10篇
  1999年   1篇
  1998年   7篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1990年   6篇
  1986年   1篇
  1985年   2篇
排序方式: 共有3067条查询结果,搜索用时 0 毫秒
51.
Lv  Pingli  Han  Zhe  Chu  Yaqi  Ji  Hairui 《Cellulose (London, England)》2021,28(14):9051-9067
Cellulose - In this study, a biomass pretreatment strategy with a recyclable cosolvent (toluene sulfonic acid/ethanol) was developed. The low boiling point solvent (78.15 °C),...  相似文献   
52.
53.
Phase‐change memory (PCM) is regarded as one of the most promising candidates for the next‐generation nonvolatile memory. Its storage medium, phase‐change material, has attracted continuous exploration. Along the traditional GeTe–Sb2Te3 tie line, the binary compound Sb2Te3 is a high‐speed phase‐change material matrix. However, the low crystallization temperature prevents its practical application in PCM. Here, Cr is doped into Sb2Te3, called Cr–Sb2Te3 (CST), to improve the thermal stability. We find that, with increase of the Cr concentration, grains are obviously refined. However, all the CST films exhibit a single hexagonal phase as Sb2Te3 without phase separation. Also, the Cr helps to inhibit oxidation of Sb atoms. For the selected film CST_10.5, the resistance ratio between amorphous and crystalline states is more than two orders of magnitude; the temperature for 10‐year data retention is 120.8 °C, which indicates better thermal stability than GST and pure Sb2Te3. PCM cells based on CST_10.5 present small threshold current/voltage (4 μA/0.67 V). In addition, the cell can be operated by a low SET/RESET voltage pulse (1.1 V/2.4 V) with 50 ns width. Thus, Cr–Sb2Te3 with suitable composition is a promising novel phase‐change material used for PCM with high speed and good thermal stability performances. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
54.
To improve the electrochemical performance of Li2MnSiO4 with low electric conductivity, the Li2MnSiO4/C composite are synthesized by a vacuum solid-state reaction of a mixture of SiO2, LiCH3COO, Mn(CH3COO)2 and designed mass of C6H12O6 · H2O as carbon sources. The crystalline structure and morphology of products are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser scattering technology (LS) respectively. The tested results show that carbon doping decrease the crystallite sizes of products, but keep the aggregation of the particles and made the impurity increased instead. The results of constant current charge-discharge prove that the mixed carbon improve Li+ transmission performance and decrease inner polatization resistance of Li2MnSiO4 materials, but can not prevent the collapse of Li2MnSiO4 crystal structure. While the galvanostatic intermittent titration technique (GITT) results demonstrate that the primary reason for the improved electrochemical performance can be attributed to increased Li-ion diffusion coefficient $(D_{Li^ + } )$ as a result from carbon doping.  相似文献   
55.
A series of experiments were performed to investigate the effect of TiMn1.5 alloying on the structure, hydrogen storage properties and electrochemical properties of LaNi3.8Co1.1Mn0.1 hydrogen storage alloys at 303 K. For simple, A, B, and C are used to represent alloys (x = 0 wt %, x = 4 wt % and x = 8 wt %) respectively. The results of XRD and SEM show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys have LaNi5 phase and (NiCo)3Ti phase. Based on the results of PCT curves, the hydrogen storage capacities of LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloys are about 1.28 wt % (A), 1.16 wt % (B) and 1.01 wt % (C) at 303 K. And the released pressure platform and the pressure hysteresis decrease with the increase of TiMn1.5 content. Meanwhile the activation curves show that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrodes can be activated in three times and the maximum discharge capacity is 343.74 mA h/g at 303 K. In addition, with the increase of TiMn1.5 content, the cyclic stability of the hydrogen storage alloy electrodes decreases obviously and the capacity retention decreases from 76.70% to 70.00% when TiMn1.5 content increases from A to C. It also can be seen that LaNi3.8Co1.1Mn0.1?xTiMn1.5 hydrogen storage alloy electrode C and B have the best self-discharge ability and the best high-rate discharge ability from self-discharge curves and high-rate discharge curves.  相似文献   
56.
The effect of Cu content on structure, hydrogen storage, and electrochemical properties of LaNi4.1-x Co0.6Mn0.3Cu x alloys has been investigated. For sample, A, B, C, and D are used to represent alloys (x?=?0, 0.15, 0.3, and 0.45), respectively. The results indicate that the four alloys are all single-phase alloy with LaNi5 phase of CaCu5 hexagonal structure, the hydrogen storage capacities of the alloy are about 1.49 wt% (A), 1.48 wt% (B), 1.43 wt% (C), and 1.25 wt% (D) at 303 K. With the increase of Cu content (x) from A to D, hydrogen desorption plateau pressure and pressure hysteresis decrease. Alloy electrode A shows better activation property and higher capacity (334.44 mAh/g). The addition of Cu improves the cyclic stability of the alloy electrodes when x?=?0?~?0.45. However, their self-discharge properties and high-rate dischargeability (HRD) decrease with the increase of x. Further, electrochemical kinetics and electrochemical impedance spectroscopy (EIS) analysis show that the reaction of alloy electrode is controlled by charge transfer step, and the adding of Cu benefits the electrode properties in alkaline solution.  相似文献   
57.
Clostridium straminisolvens (CSK1) is a novel cellulolytic bacterium isolated from a cellulose-degrading bacterial community MC1. In this study, the influence of the following cell disruption and elution methods on CSK1cellulase release was investigated: (1) freezing–thawing, (2) ultrasonication, (3) elution, (4) freezing–thawing following elution, (5) ultrasonication following elution, and lastly (6) high-pressure homogenization following elution. The activity of the cellulases CMCase, β-glucosidase, Avicelase, FPase, and xylanase in crude extracts increased 81.5, 23.8, 87.7, 46.3, and 51.7 %, respectively, with an observed optimal treatment method for each cellulase type. The release of protein from CSK1 cells increased following either cell disruption or elution and was highest at 88.3 % in the homogenization high pressure following elution treatment. A newly observed protein was present following cell elution. The performance of cell elution as determined by real time-PCR indicated that the first time cell elution removed more than 90 % of the CSK1 cells from the substrate. These findings demonstrate that cell disruption and elution are effective methods for inducing cellulase release, and elution is the key step for CSK1. To our knowledge, this study presents the first evidence of optimal treatments for induction of cellulase release of Clostridium straminisolvens. This information will be of great value for use in subsequent efforts to better understand the cellulase characteristics of CSK1 and cellulose degradation mechanisms of the MC1 community.  相似文献   
58.
The aim of this study is to develop a new method for the preparation of Fe3O4@SiO2–An NPs from copperas. The core–shell structures of the nanoparticles and chemical composition have been confirmed by TEM, XRD and FTIR techniques. Fluorescence Enhancement of Fe3O4@SiO2–An NPs with zinc ions was investigated by fluorescence emission spectra. The results indicated that the Fe3O4 NPs with a high purity (Total Fe 72.16 %) were obtained from copperas by chemical co-precipitation method and have a uniform spherical morphology with an average diameter of about 10 nm. The Fe3O4 NPs coated with silica nanoparticles were prepared, and an attempt had been made that the Fe3O4@SiO2 NPs were modified by 3-aminopropyltriethoxysilane and 9-anthranone successively. The recommended mole ratio of ethanol to water and the content of ammonia water added were 4:1 and 25 wt% respectively, which have an obviously effect on the combination of the final well-ordered MNPs with the amino functionalities and reactant components. The functionalized Fe3O4@SiO2–An NPs have a fluorescence property and this fluorescence effect can be enhanced with the Zn2+ ions attachment. Meanwhile, the saturated magnetization of Fe3O4@SiO2–An NPs was 37.8 emug?1 at 25 °C and this fluorescent material exhibited excellent magnetic properties. A new way was therefore provided for the comprehensive utilization of the unmarketable copperas. Moreover, the functionalized Fe3O4@SiO2–An NPs have a big potential in environmental decontamination, medical technology and biological science.  相似文献   
59.
In situ exsolution of metal nanoparticles in perovskite under reducing atmosphere is employed to generate a highly active metal–oxide interface for CO2 electrolysis in a solid oxide electrolysis cell. Atomic-scale insight is provided into the exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ (LSCFM) by in situ scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy and DFT calculations. The doped Mo atoms occupy B sites of LSCFM, which increases the segregation energy of Co and Fe ions at B sites and improves the structural stability of LSCFM under a reducing atmosphere. In situ STEM measurements visualized sequential exsolution of Co and Fe ions, formation of CoFe alloy nanoparticles, and reversible exsolution and dissolution of CoFe alloy nanoparticles in LSCFM. The metal–oxide interface improves CO2 adsorption and activation, showing a higher CO2 electrolysis performance than the LSCFM counterparts.  相似文献   
60.
Precise atomic structure of metal nanoclusters (NCs) is fundamental for elucidating the structure–property relationships and the inherent size-evolution principles. Reported here is the largest known FCC-based (FCC=face centered cubic) silver nanocluster, [Ag100(SC6H33,4F2)48(PPh3)8]: the first all-octahedral symmetric nesting Ag nanocluster with a four-layered Ag6@Ag38@Ag48S24@Ag8S24P8 structure, consistent symmetry elements, and a unique rhombicuboctahedral morphology distinct from theoretical predictions and previously reported FCC-based Ag clusters. DFT studies revealed extensive interlayer interactions and degenerate frontier orbitals. The FCC-based Russian nesting doll model constitutes a new platform for the study of the size-evolution principles of Ag NCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号