首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3009篇
  免费   563篇
  国内免费   461篇
化学   2382篇
晶体学   45篇
力学   153篇
综合类   21篇
数学   350篇
物理学   1082篇
  2024年   10篇
  2023年   57篇
  2022年   115篇
  2021年   124篇
  2020年   145篇
  2019年   139篇
  2018年   113篇
  2017年   125篇
  2016年   178篇
  2015年   169篇
  2014年   189篇
  2013年   267篇
  2012年   264篇
  2011年   242篇
  2010年   224篇
  2009年   168篇
  2008年   203篇
  2007年   150篇
  2006年   152篇
  2005年   161篇
  2004年   131篇
  2003年   90篇
  2002年   103篇
  2001年   117篇
  2000年   70篇
  1999年   69篇
  1998年   36篇
  1997年   30篇
  1996年   25篇
  1995年   23篇
  1994年   22篇
  1993年   17篇
  1992年   16篇
  1991年   14篇
  1990年   20篇
  1989年   8篇
  1988年   5篇
  1987年   8篇
  1986年   12篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有4033条查询结果,搜索用时 15 毫秒
391.
The functionalization of multi‐walled carbon nanotubes (MWNTs) was achieved by grafting furfuryl amine (FA) onto the surfaces of MWNTs. Furthermore, the functional MWNTs were incorporated into carbon fabric composites and the tribological properties of the resulting composites were investigated systematically on a model ring‐on‐block test rig. Friction and wear tests revealed that the modified MWNTs filled carbon fabric composite has the highest wear resistance under all different sliding conditions. Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) revealed that MWNTs were successfully functionalized and the modification led to an improvement in the dispersion of MWNTs, which played an important role on the enhanced tribological properties of carbon fabric composites. It can also be found that the friction and wear behavior of MWNTs filled carbon fabric composites are closely related with the sliding conditions such as sliding speed, load, and lubrication conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
392.
LpxC is an essential enzyme in the lipid A biosynthetic pathway in gram-negative bacteria. Several promising antimicrobial lead compounds targeting LpxC have been reported, though they typically display a large variation in potency against different gram-negative pathogens. We report that inhibitors with a diacetylene scaffold effectively overcome the resistance caused by sequence variation in the LpxC substrate-binding passage. Compound binding is captured in complex with representative LpxC orthologs, and structural analysis reveals large conformational differences that mostly reflect inherent molecular features of distinct LpxC orthologs, whereas ligand-induced structural adaptations occur at a smaller scale. These observations highlight the need for a molecular understanding of inherent structural features and conformational plasticity of LpxC enzymes for optimizing LpxC inhibitors as broad-spectrum antibiotics against gram-negative infections.  相似文献   
393.
Chirality of a nucleotide-Cu(II) complex molecule, [CuNa(GMP)(HGMP)(H(2)O)(7)]·6(H(2)O)·CH(3)OH (GMP = guanosine 5'-monophosphate), is delivered to the three-dimensional supramolecular architecture by hydrogen bonding. Liquid- and solid-state circular dichroism (CD) spectroscopy are used to analyse the molecular and supramolecular chirality.  相似文献   
394.
This paper investigates the relationship between topology and generalized rough sets induced by binary relations. Some known results regarding the relation based rough sets are reviewed, and some new results are given. Particularly, the relationship between different topologies corresponding to the same rough set model is examined. These generalized rough sets are induced by inverse serial relations, reflexive relations and pre-order relations, respectively. We point that inverse serial relations are weakest relations which can induce topological spaces, and that different relation based generalized rough set models will induce different topological spaces. We proved that two known topologies corresponding to reflexive relation based rough set model given recently are different, and gave a condition under which the both are the same topology.  相似文献   
395.
The bottom-up fabrication of surface hierarchical nanostructures is of great importance for the development of molecular nanostructures for chiral molecular recognition and enantioselective catalysis. Herein, we report the construction of a series of 2D chiral hierarchical structures by trinary molecular self-assembly with copper phthalocyanine (CuPc), 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23), and 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB). A series of flower-like chiral hierarchical molecular architectures with increased generations are formed, and the details of these structures are investigated by high resolution scanning tunneling microscopy (STM). The flower-like hierarchical molecular architectures could be described by a unified configuration in which the lobe of each architecture is composed of a different number of triangular shape building units (TBUs). The off-axis edge-to-edge packing of TBUs confers the organizational chirality of the hierarchical assemblies. On the other hand, the TBUs can tile the surface in a vertex-sharing configuration, resulting in the expansion of chiral unit cells, which thereby further modulate the periodicity of chiral voids in the multilevel hierarchical assemblies. The formation of desired hierarchical structures could be controlled through tuning the molar ratio of each component in liquid phase. The results are significant for the design and fabrication of multicomponent chiral hierarchical molecular nanostructures.  相似文献   
396.
We investigated the thermodynamic processes of two-dimensional (2D) metallo-supramolecular self-assembly at molecular resolution using scanning tunneling microscopy and variable-temperature low-energy electron diffraction. On a Au(111) substrate, tripyridyl ligands coordinated with Cu in a twofold Cu-pyridyl binding mode or with Fe in a threefold Fe-pyridyl binding mode, forming a 2D open network structure in each case. The network structures exhibited remarkable thermal stability (600 K for the Cu-coordinated network and 680 K for the Fe-coordinated network). The Fe-pyridyl binding was selected thermodynamically as well as kinetically in self-assembly involving both modes. The selectivity can be effectively suppressed in a specifically designed self-assembly route.  相似文献   
397.
In order to facilitate the determination of the primary and secondary origin of atmospheric organic aerosols, a novel method involving chiral capillary gas chromatography coupled with mass spectrometry has been developed and validated. The method was focused on the analysis of 2-methylerythritol and 2-methylthreitol, considered to be tracers of secondary organic aerosols from the oxidation of atmospheric isoprene. The method was validated by performing various tests using authentic standards, including pure enantiomeric standards. The result showed that the analytical method itself does not affect the enantiomeric composition of the samples analyzed. The method was applied on atmospheric aerosols from a boreal forest collected in Aspvreten, Sweden and on laboratory samples obtained from liquid phase oxidation of isoprene and smog chamber experiments. Aerosol samples contained one enantiomer of 2-methylerythritol in significantly larger quantities than the others. In contrast, the liquid-phase oxidation of isoprene and its gas-phase oxidation in the smog chamber produced all enantiomers in equal quantities. The results obtained where the enantiomer fraction, EF, is larger than 0.50 suggest that 2-methyltetrols in atmospheric aerosols may also have biological origin. Information about the differences between enantiomer fractions obtained using this method brings new insights in the area of atmospheric aerosols.  相似文献   
398.
A novel class of ZnSalens (ZnL(1-10)) with lipophilic and cationic conjugates as optical probes in single and two-photon fluorescence microscopy images of living cells were prepared, which exhibited chemo- and photostability, low cytotoxicity and high subcellular selectivity.  相似文献   
399.
A regenerable electrochemical immunosensor with novel 3D DNA nanostructure-decorated gold surfaces was developed by taking advantage of DNA-directed antibody conjugation and high resistance to non-specific protein adsorption.  相似文献   
400.
The acid and transport properties of the anhydrous Keggin‐type 12‐tungstophosphoric acid (H3PW12O40; HPW) have been studied by solid‐state 31P magic‐angle spinning NMR of absorbed trimethylphosphine oxide (TMPO) in conjunction with DFT calculations. Accordingly, 31P NMR resonances arising from various protonated complexes, such as TMPOH+ and (TMPO)2H+ adducts, could be unambiguously identified. It was found that thermal pretreatment of the sample at elevated temperatures (≥423 K) is a prerequisite for ensuring complete penetration of the TMPO guest probe molecule into HPW particles. Transport of the TMPO absorbate into the matrix of the HPW adsorbent was found to invoke a desorption/absorption process associated with the (TMPO)2H+ adducts. Consequently, three types of protonic acid sites with distinct superacid strengths, which correspond to 31P chemical shifts of 92.1, 89.4, and 87.7 ppm, were observed for HPW samples loaded with less than three molecules of TMPO per Keggin unit. Together with detailed DFT calculations, these results support the scenario that the TMPOH+ complexes are associated with protons located at three different terminal oxygen (Od) sites of the PW12O403− polyanions. Upon increasing the TMPO loading to >3.0 molecules per Keggin unit, abrupt decreases in acid strength and the corresponding structural variations were attributed to the change in secondary structure of the pseudoliquid phase of HPW in the presence of excessive guest absorbate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号