首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  国内免费   1篇
化学   35篇
力学   3篇
数学   5篇
物理学   17篇
  2023年   1篇
  2022年   3篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2013年   7篇
  2012年   3篇
  2011年   3篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2000年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1986年   3篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
41.
It is shown that the diamagnetic shielding of the nuclei can be calculated to a good accuracy by using point-charge approximation. Very good results were obtained by the semiempirical SCC-MO method employing Clementi-Raimondi AO basis set.  相似文献   
42.
Semiconducting carbon nitride polymers are used in metal-free photocatalysts and in opto-electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials – 2D layered poly(triazine imide) (PTI) and hydrogen-bonded melem hydrate – obtained from three low-melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI. The size of the anion plays a significant role in the formation process of the condensed carbon nitride polymers, and it suggests a strong templating effect. The smaller anions (chloride and bromide) become incorporated into triazine (C3N3)-based PTI frameworks. The larger iodide does not stabilize the formation of a triazine-based polymer, but instead it leads to the formation of the heptazine (C6N7)-based hydrogen-bonded melem hydrate as the main crystalline phase. Melem hydrate, obtained as single-crystalline powders, was compared with PTI in photocatalytic hydrogen evolution from water and in an OLED device. Further, the emergence of each carbon nitride species from its corresponding salt eutectic was rationalized via density functional theory calculations. This study highlights the possibilities to further tailor the properties of eutectic salt melts for ionothermal synthesis of organic functional materials.  相似文献   
43.
The European Physical Journal E - In the nanoscale regime, flow behaviors for liquids show qualitative deviations from bulk expectations. In this work, we reveal by molecular dynamics simulations...  相似文献   
44.
The α-C position in 4-oxo thiazolidinones functions as one of the three possible nucleophilic sites in these molecules. We used the inherent reactivity of α-C of the exocyclic double bond (a so called push pull system) to obtain bicyclic fused thiazolidinones via π-annulation cyclization. Appropriate reaction conditions to selectively activate this position and secondary nitrogen towards N,π-annulation were found. Furthermore, the intramolecular vinylogous iminium ion 6-exo-trig cyclization was used to access fused bicyclic precursors for the π-annulation in order to obtain the novel tricyclic structures stereoselectively.  相似文献   
45.
In this paper we give some results of integrability and several classes of integrable equations of first-order nonlinear ordinary differential equations. Many known results of integrability and integrable equations are special cases of them. They may be applied in physics and mechanics, and to derive soliton equations and find soliton solutions.  相似文献   
46.
Terze  Zdravko  Pandža  Viktor  Andrić  Marijan  Zlatar  Dario 《Nonlinear dynamics》2022,109(2):975-987

Insect flight research is propelled by their unmatched flight capabilities. However, complex underlying aerodynamic phenomena make computational modeling of insect-type flapping flight a challenging task, limiting our ability in understanding insect flight and producing aerial vehicles exploiting same aerodynamic phenomena. To this end, novel mid-fidelity approach to modeling insect-type flapping vehicles is proposed. The approach is computationally efficient enough to be used within optimal design and optimal control loops, while not requiring experimental data for fitting model parameters, as opposed to widely used quasi-steady aerodynamic models. The proposed algorithm is based on Helmholtz–Hodge decomposition of fluid velocity into curl-free and divergence-free parts. Curl-free flow is used to accurately model added inertia effects (in almost exact manner), while expressing system dynamics by using wing variables only, after employing symplectic reduction of the coupled wing-fluid system at zero level of vorticity (thus reducing out fluid variables in the process). To this end, all terms in the coupled body-fluid system equations of motion are taken into account, including often neglected terms related to the changing nature of the added inertia matrix (opposed to the constant nature of rigid body mass and inertia matrix). On the other hand—in order to model flapping wing system vorticity effects—divergence-free part of the flow is modeled by a wake of point vortices shed from both leading (characteristic for insect flight) and trailing wing edges. The approach is evaluated for a numerical case involving fruit fly hovering, while quasi-steady aerodynamic model is used as benchmark tool with experimentally validated parameters for the selected test case. The results indicate that the proposed approach is capable of mid-fidelity accurate calculation of aerodynamic loads on the insect-type flapping wings.

  相似文献   
47.
We report on wide-angle X-ray scattering measurements along the smectic-A to chiral ferroelectric smectic-C* phase transition of the liquid crystal SCE9 and its mixture with maghemite magnetic nanoparticles of typical dimension 20 nm. The temperature profiles of the tilt angle are fitted by an extended mean-field model. Neither pre-transitional order effects nor variations in the SmA layer thickness are observed, indicating a rather negligible influence of these nanoparticles upon the molecular orientation at the smectic-A to smectic-C* phase transition of SCE9. These results are very different from what was observed for smaller CdSe nanoparticles (3.5 nm) where both a dilation of the smectic layers in the SmA phase and a crossover behaviour for the smectic-A to smectic-C* transition away from tricriticality have been observed for analogous concentrations.  相似文献   
48.
Foam thin liquid films (TLF) and monolayers at the air–water interface formed by DMPC mixed with DMPE-bonded poly (ethylene glycol)s (DMPE-PEG550, DMPE-PEG2000 and DMPE-PEG5000) were obtained. The influence of both (i) PEG chain size (evaluated in terms of Mw) and mushroom-to-brush conformational transition and (ii) of the liposome/micelle ratio in the film-forming dispersions, on the interfacial properties of mixed DMPC/DMPE-PEG films was compared.

Foam film studies demonstrated that DMPE-PEG addition to foam TLFs caused (i) delayed kinetics of film thinning and black spot expansion and (ii) film stabilization. At the mushroom-to-brush transition, due to steric repulsion increased DMPE-PEG films thickness reached 25 nm while pure DMPC films were only 8 nm thick Newton black films. It was possible to differentiate DMPE-PEG2000/5000 from DMPE-PEG550 by the ability to change foam TLF formation mechanism, which could be of great importance for “stealth” liposome design.

Monolayer studies showed improved formation kinetics and equilibrium surface tension decrease for DMPE-PEG monolayers compared with DMPC pure films.

SEM observations revealed “smoothing” and “sealing” of the defects in the solid-supported layer surface by DMPE-PEGs adsorption, which could explain DMPE-PEGs ability to stabilize TLFs and to decrease monolayer surface tension.

All effects in monolayers, foam TLFs and solid-supported layers increased with the increase of PEG Mw and DMPE-PEG concentration. However, at the critical DMPE-PEG concentration (where mushroom-to-brush conformational transition occurred) maximal magnitude of the effects was reached, which only slightly changed at further DMPE-PEG content and micelle/liposome ratio increase.  相似文献   

49.
A high-resolution calorimetry and deuteron-nuclear magnetic resonance study of a paranematic-nematic phase transition was performed on liquid single-crystal elastomers. We show that density variations of both rodlike and pointlike cross-links strongly affect the mean value and the dispersion of local mechanical fields. The system exhibits an inherent weakly disordered orientational state composed of regions with the temperature profile of the nematic order parameter ranging from first order to supercritical. On increasing the cross-linking density the predominantly first order thermodynamic response transforms into a predominantly supercritical one.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号