首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3670篇
  免费   171篇
化学   2184篇
晶体学   28篇
力学   66篇
数学   812篇
物理学   751篇
  2021年   45篇
  2020年   73篇
  2019年   61篇
  2018年   68篇
  2017年   90篇
  2016年   175篇
  2015年   156篇
  2014年   148篇
  2013年   265篇
  2012年   184篇
  2011年   257篇
  2010年   167篇
  2009年   119篇
  2008年   134篇
  2007年   98篇
  2006年   87篇
  2005年   106篇
  2004年   129篇
  2003年   83篇
  2002年   34篇
  2001年   31篇
  2000年   34篇
  1999年   26篇
  1998年   32篇
  1997年   27篇
  1996年   30篇
  1995年   28篇
  1990年   30篇
  1989年   24篇
  1988年   25篇
  1985年   34篇
  1984年   37篇
  1983年   30篇
  1982年   29篇
  1981年   25篇
  1978年   30篇
  1977年   24篇
  1976年   30篇
  1975年   25篇
  1973年   27篇
  1968年   40篇
  1965年   43篇
  1964年   45篇
  1963年   27篇
  1962年   38篇
  1961年   36篇
  1960年   32篇
  1959年   29篇
  1958年   26篇
  1957年   25篇
排序方式: 共有3841条查询结果,搜索用时 274 毫秒
41.
Intercalation compounds of α-Zr(HPO4)2 · H2O with 1,2-alkanediols (from C3 to C16) have been prepared by replacing 1-propanol in α-Zr(HPO4)2 · 2C3H7OH with the desired 1,2-alkanediols by a treatment in a microwave field. It was found that the intercalates contain 1.5 molecules of diol per formula unit. The diol molecules are placed between the host layers in a bimolecular way with their aliphatic chains tilted at an angle of 51°. The diol molecules are anchored in the interlayer space by H-bonds. A mixed intercalate, containing 1,2-butanediol and 1,2-decanediol in a roughly equimolar ratio, is formed when the α-Zr(HPO4)2 · 2C3H7OH intercalate, suspended in a mixture of 1,2-butanediol and 1,2-decanediol, is exposed to microwave radiation. No new phase containing both types of the guest molecules was observed when the 1-propanol intercalate, suspended in a mixture of 1-propanol and 1,2-octanediol, is exposed to microwave radiation.  相似文献   
42.
Zusammenfassung An praktischen Beispielen wurde gezeigt, in welcher Weise die Trennung organischer Verbindungen mittels Papierchromatographie erzielt werden kann. Man ist nicht auf einige bewährte Lösungsmittel systeme allein angewiesen, sondern kann von Fall zu Fall systematisch neue und geeignete Systeme benützen. Es hat sich bewährt, sich nach den elementaren Löslichkeitsregeln für organische Stoffe zu richten, unter der Voraussetzung, daß die zu chromatographierende Verbindung in der stationären Phase gut, in der mobilen Phase dagegen weniger löslich ist. Durch Änderung der stationären Phase (Wasser, nicht wäßriges, polares Lösungsmittel, nicht polares Lösungsmittel) oder der Polarität und Zusammensetzung der mobilen Phase kann man das Wandern der Flecke am Chromatogramm beeinflussen, beliebige RfWerte erhalten und in vielen Fällen auch eine beliebige Reihenfolge der Verbindungen am Chromatogramm erzielen.Da die Löslichkeit organischer Verbindungen von intermolekularen Kräften abhängig ist, erscheint das Problem im Zusammenhang mit strukturellen Einflüssen sehr kompliziert und muß für jeden Fall auf eigene Weise gelöst werden. Die Löslichkeitseigenschaften können weiter durch Benutzung reaktiver Lösungsmittel beeinflußt werden, die z. B. die Verbindungen in wasserlösliche Salze überführen können. Dabei ist an die möglichen Komplikationen, die bei ionisierbaren Verbindungen durch Dissoziation und Hydrolyse entstehen können, zu achten.Von den Hauptfaktoren, die eine Trennung ermöglichen können, seien die folgenden erwähnt: funktionelle Gruppen, ihre Anzahl, Polarität, gegenseitige Stellung, bzw. ihre Basizität oder Azidität, C-Atomanzahl in homologen Verbindungen, inter- und intramolekulare Wasserstoffbindungen, sterische Faktoren u. a. Es ist dann von der Art des gewählten Lösungsmittelsystems abhängig, welche der genannten Faktoren im Vordergrund stehen und welche beseitigt werden.Wenn die Löslichkeitsunterschiede der zu trennenden Stoffe zu gering sind, um gute Trennungen zu ermöglichen, ist es zweckmäßig, die Verbindungen in solche Derivate zu überführen, deren Strukturunterschiede größer sind.
Summary Practical examples are given to show how organic compounds can be separated by means of paper chromatography. The operator is not limited to tested solvent systems, but can use new suitable systems as the occasion demands. It has been found best to abide by the elementary rules of solubility of organic compounds, provided the compound to be chromatographed is quite soluble in the stationary phase but less soluble in the mobile phase. By altering the stationary phase (water, nonaqueous, polar solvent, non-polar solvent) or the polarity and composition of the mobile phase, the migration of the stains in the chromatogram can be influenced, selectedR f -values can be obtained, and in many cases it is also possible to secure a desired succession of the compounds on the chromatogram.Since the solubility of organic compounds depends on intermolecular forces, the problem in connection with structural influences appears very complicated and must be solved individually for each case. Moreover, the solubility characteristics can be affected by using reactive solvents; for instance, the compounds can be converted into water soluble salts. Under such circumstances, sight must not be lost of the complications which may arise because of the dissociation and hydrolysis of ionizable compounds. The following are among the chief factors, which may make a separation possible: functional groups, their number, polarity, relative position, their basicity or acidity, C-atom number in homologous compounds, inter- and intramolecular hydrogen bonds, steric factors, etc. It then depends on the type of solvent system selected, which of these factors are predominant and which can be neglected or eliminated.If the solubility differences are too slight to permit good separations, the compounds to be separated should, if possible, be converted into derivatives whose structural differences are more pronounced.

Résumé Des exemples pratiques montrent comment il est possible d'effectuer la séparation de combinaisons organiques par Chromatographie sur papier. Il n'est pas uniquement fait appel à des systèmes de solvants éprouvés mais, dans certains cas, de nouveaux systèmes appropriés sont systématiquement utilisés.Il s'est avéré satisfaisant de faire appel aux règles élémentaires de solubilité des substances organiques sous réserve que la combinaison à chromatographier soit suffisamment soluble dans la phase stationnaire et moins soluble dans la phase mobile. En faisant varier la phase stationnaire (eau, solvant non aqueux, solvant polaire, solvant non polaire) ou la polarité et la composition de la phase mobile, il est possible d'influencer la migration des taches du chromatogramme, d'obtenir des valeurs deR f désirées et, dans de nombreux cas, d'obtenir les combinaisons dans un ordre déterminé sur le chromatogramme.La solubilité des combinaisons organiques étant fonction des forces intermoléculaires il en résulte que le problème se complique considérablement dans la mesure où l'on considère les influences structurelles et que chaque cas particulier doit recevoir une solution qui lui est propre. Les propriétés de solubilité peuvent en outre être influencées par l'emploi de solvants réactifs qui peuvent transformer, par exemple les combinaisons en sels solubles dans l'eau. Il faut alors tenir compte des possibilités de complications qui peuvent apparaître par dissociation et hydrolyse des combinaisons ionisables.Parmi les principaux facteurs qui permettent une séparation, il convient de mentionner les suivants: les groupes fonctionnels, leur nombre, leur polarité, leur position relative, ou encore leur acidité ou leur basicité, le nombre d'atomes de carbone de combinaisons homologues, les liaisons hydrogène inter- et intramoléculaires, les facteurs stériques, etc. Suivant la nature du système solvant choisi pourront alors varier les facteurs dont l'effet est prépondérant et ceux dont l'effet est nul. Lorsque les différences de solubilité des substances à séparer sont trop faibles pour permettre des séparations satisfaisantes, il est commode de transformer les combinaisons en dérivés dont les différences de structure soient plus importantes.
  相似文献   
43.
A Doppler broadening is described of the 4438 keV spectral gamma-line observed by means of a Ge(Li) detector during the deexcitation of nuclei of12C in an inelastic scattering12C(n, n′γ)12C using an241Am−Be source as well as during the reaction9Be(α, nγ)12C taking place in the Am−Be source. The FWHM of the spectral line is equal to (90±4) keV in the latter reaction and (64±8) keV in the former process. Experimental values agree well with theoretical ones. Presented at the Instrumental Activation Analysis Conference, IAA 79, June 4–8, 1979, Klučenice, Czechoslovakia.  相似文献   
44.
Summary A flow-through two electrode wall-jet cell with a platinum measuring electrode and a cell volume of 20 nl has been designed and evaluated. It has been used to detect phenols by reversed phase liquid chromatography using short micro bore columns. The linear dynamic range between the measured current and the concentration is greater than 103 (1.5×10–7–5×10–4 mol/l) and the minimum analyzable amount was found to be 10 pg for pyrocatechol. A negligible broadening in the detector permits the use of micro columns down to 0.5 mm internal diameter, packed with 5 m particles, without any substantial distortion of eluted zones.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   
45.
Accumulation of five heavy metal ions by five species of wood-rotting basidiomycetes during a 9-day cultivation was studied. Contents of Cd, Cu, Pb, and Zn were measured using ICP-MS; the amount of mercury was determined directly in solid samples using the Advanced Mercury Analyser. A standard operation procedure for the sample preparation and determination of metal content was developed and validated. Presence of Cd, Cu, Hg, and Pb decreased the accumulation of zinc by the fungi. The basidiomycete Pycnoporus cinnabarinus exhibited the highest metal binding capacity of all fungi tested.  相似文献   
46.
Summary New cyanato-copper(II) complexes with aminopyridines (ampy) were prepared and studied;viz. Cu(NCO)2(3-ampy)2 (- and -form), Cu(NCO)2(3-ampy)2(H2O), Cu(NCO)2(4ampy)2, and Cu(NCO)2(2-ampy). According to physical results, the Cu(NCO)2L2 complexes exhibitpseudo-octahedral structures with amine nitrogens or cyanate oxygens occupying axial sites. For - and -Cu(NCO)2(3-ampy)2 the crystal structure reorganization is connected with a change in axial distortion. The compound Cu(NCO)2(2-ampy) is square pyramidal or — more probably — rhombic octahedral and its strong antiferromagnetism reveals the N-bridging function of the NCO groups.Part XXII, Ref. 9.  相似文献   
47.
Suspensions of lignite in a solution of a high molecular weight carboxymethylcellulose show peculiar rheological behaviour. Unless the lignite concentration is sufficiently high, apparent viscosity and viscoelastic moduli of the suspension are lower than those of the pure solution. This effect is not suppressed by changing pH and seems to be common for low-concentrated suspensions in solutions of high molecular weight (bio)polymer. It is explained by specific structuring of the suspensions. Lignite particles at lower concentration separate long cellulose chains and facilitate their movement under shear flow. The particles loosen inter-chain contacts, disturb and release elastic gel-like structure formed by the long cellulose chains, which results in the low strain oscillatory deformation, the decrease in the moduli and the increase in the loss angle. If the amount of lignite particles is sufficiently high, suspension stiffening occurs as usual. No such effect was observed for suspensions prepared from the low molecular weight derivative. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
48.
An electrochemical method for the determination of the ionophores monensin and lasalocid was developed, based on the polarization of an agar gel/nitrobenzene electrolyte interface. The measured current corresponding to the facilitated ion transfer across this interface is directly proportional to the concentration of an ionophore dissolved in the organic phase. Using cyclic voltammetry in a three-electrode system the detection limit for both ionophores is about 3 × 10?5 M.  相似文献   
49.
The possibility of coulometric titrations of cysteine, 2-thio-uracil, 6-mercaptopurine, and 6-thioguanine with iodine and bromine in methanol and with bromine in acetic acid has been investigated. Conditions have been found for the direct titration of the test substances with iodine in methanol based on their 1-electron oxidation to the corresponding disulphides and for their direct and indirect determination with bromine in acetic acid based on their 6-electron oxidation to the corresponding sulphonic acids.On leave from Department of Analytical Chemistry, Charles University, Prague, Czechoslovakia  相似文献   
50.
After deproteination of samples with trichloroacetic acid, creatine is determined by reaction with 1-naphthol and biacetyl, based on a stopped-flow method. The calibration graph is linear over the range 0–250 mg l?1, and recoveries from muscle samples are quantitative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号