首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   15篇
  国内免费   1篇
化学   168篇
晶体学   2篇
力学   1篇
数学   26篇
物理学   80篇
  2024年   2篇
  2023年   4篇
  2022年   12篇
  2021年   14篇
  2020年   13篇
  2019年   4篇
  2018年   12篇
  2017年   6篇
  2016年   13篇
  2015年   8篇
  2014年   11篇
  2013年   18篇
  2012年   18篇
  2011年   19篇
  2010年   11篇
  2009年   9篇
  2008年   17篇
  2007年   14篇
  2006年   13篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   5篇
  1966年   2篇
  1965年   4篇
  1939年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
11.
Biological brains are capable of general learning without supervision. This is learning across multiple domains without interference. Unlike artificial neural networks, in real brains, learned information is not purely encoded in real-valued weights but instead it resides in many neural aspects. Such aspects include, dendritic and axonal morphology, number and location of synapses, synaptic strengths and the internal state of neural components. Natural evolution has come up with extraordinary ‘programs’ for neurons that allow them to build learning systems through group activity. The neuron is the ‘brain within the brain’. We argue that evolving neural developmental programs which when executed continuously build, shape and adjust neural networks is a promising direction for future research. We discuss aspects of neuroscience that are important, and examine a model that incorporates many of these features that has been applied to a number of problems: wumpus world, checkers and maze solving.  相似文献   
12.
13.
We explored some unique defects in a batch of cadmium zinc telluride (CdZnTe) crystals, along with dislocations and Te-rich decorated features, revealed by chemical etching. We extensively investigated these distinctive imperfections in the crystals to identify their origin, dimensions, and distribution in the bulk material. We estimated that these features ranged from 50 to 500 μm in diameter, and their depth was about ∼300 μm. The density of these features ranged between 2×102 and 1×103 per cm3. We elaborated a model of them and projected their effect on charge collection and spectral response. In addition, we fabricated detectors with these defective crystals and acquired fine details of charge-transport phenomena over the detectors’ volume using a high-spatial resolution (25 μm) X-ray response mapping technique. We related the results to better understand the defects and their influence on the charge-transport properties of the devices. The role of the defects was identified by correlating their signatures with the findings from our theoretical model and our experimental data.  相似文献   
14.
15.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   
16.
In this study, the kinetics of the Ising metamagnet where the interlayer interactions are ferromagnetic has been investigated under the mean field approximation. In describing the kinetics of the system, Glauber stochastic dynamics in the presence of an external field which performs time-dependent oscillations, has been utilized. Obtained results could be identified by two distinct types: the asymmetric solutions oscillating in the vicinity of finite values where the lattice magnetization has different values and the symmetric solutions being zero where the sublattice magnetizations are equal to each other. On the other hand, it has been observed that in the case where the system's initial state has a homogenous magnetization it exhibits two different periodical behaviors in the course of time.  相似文献   
17.
The replacement of traditional ruthenium-based photosensitizers with low-cost and abundant iron analogs is a key step for the advancement of scalable and sustainable dye-sensitized water splitting cells. In this proof-of-concept study, a pyridinium ligand coordinated pentacyanoferrate(II) chromophore is used to construct a cyanide-based CoFe extended bulk framework, in which the iron photosensitizer units are connected to cobalt water oxidation catalytic sites through cyanide linkers. The iron-sensitized photoanode exhibits exceptional stability for at least 5 h at pH 7 and features its photosensitizing ability with an incident photon-to-current conversion capacity up to 500 nm with nanosecond scale excited state lifetime. Ultrafast transient absorption and computational studies reveal that iron and cobalt sites mutually support each other for charge separation via short bridging cyanide groups and for injection to the semiconductor in our proof-of-concept photoelectrochemical device. The reorganization of the excited states due to the mixing of electronic states of metal-based orbitals subsequently tailor the electron transfer cascade during the photoelectrochemical process. This breakthrough in chromophore-catalyst assemblies will spark interest in dye-sensitization with robust bulk systems for photoconversion applications.  相似文献   
18.
19.
20.
Nanocrystalline cobalt ferrites with nominal composition CoCrxFe2−xO4 ranging from x=0.0 to 0.5 with step increment of 0.25 were prepared by sol–gel auto combustion and chemical co-precipitation techniques. A comparative study of structural, electrical and magnetic properties of these ferrites has been measured using different characterization techniques. Structural and micro-structural studies were measured using X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy and atomic force microscopy. Crystallite sizes of the series are within the range of 12–29±2 nm. Lattice parameters decrease by increasing Cr3+ concentration. FTIR confirms the presence of two lattice absorption bands. DC electrical resistivity increases to a value of ∼1010 Ω-cm with increase in Cr3+ concentration, but the most significant increase is in samples prepared by sol–gel combustion. Dielectric properties have been measured as a function of frequency at room temperature. Dielectric loss decreases to 0.1037 and 0.0108 at 5 MHz for chemical co-precipitation and sol–gel combustion, respectively. Impedance measurements further helped in analyzing the electrical properties and to separate the grain and grain boundary resistance effects using a complex impedance analysis. Magnetic parameters were studied using a vibrating sample magnetometer in the applied field of 10 kOe. The saturation magnetization decreased from 63 to 10.8 emu/gm with increase in Cr3+ concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号