首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   24篇
  国内免费   7篇
化学   552篇
晶体学   7篇
力学   23篇
数学   130篇
物理学   158篇
  2023年   6篇
  2022年   7篇
  2021年   15篇
  2020年   12篇
  2019年   16篇
  2018年   8篇
  2016年   21篇
  2015年   10篇
  2014年   19篇
  2013年   21篇
  2012年   36篇
  2011年   45篇
  2010年   23篇
  2009年   16篇
  2008年   42篇
  2007年   37篇
  2006年   47篇
  2005年   48篇
  2004年   39篇
  2003年   30篇
  2002年   28篇
  2001年   17篇
  2000年   41篇
  1999年   23篇
  1998年   5篇
  1997年   7篇
  1995年   7篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   8篇
  1983年   13篇
  1982年   15篇
  1981年   9篇
  1980年   10篇
  1979年   13篇
  1978年   7篇
  1977年   8篇
  1976年   6篇
  1975年   9篇
  1974年   9篇
  1973年   10篇
  1970年   5篇
  1969年   6篇
  1959年   5篇
排序方式: 共有870条查询结果,搜索用时 15 毫秒
41.
Lead dioxide coatings on inert substrates such as titanium and carbon now offer new opportunities for a material known for 150 years. It is now recognised that electrodeposition allows the preparation of stable coatings with different phase structures and a wide range of surface morphologies. In addition, substantial modification to the physical properties and catalytic activities of the coatings are possible through doping and the fabrication of nanostructured deposits or composites. In addition to applications as a cheap anode material in electrochemical technology, lead dioxide coatings provide unique possibilities for probing the dependence of catalytic activity on layer composition and structure (critical review, 256 references).  相似文献   
42.
The gene cluster from Pantoea agglomerans responsible for biosynthesis of the dapdiamide antibiotics encodes an adenylation-thiolation didomain protein, DdaD, and an Fe(II)/α-ketoglutarate-dependent dioxygenase homologue, DdaC. Here we show that DdaD, a nonribosomal peptide synthetase module, activates and sequesters N(β)-fumaramoyl-l-2,3-diaminopropionate as a covalently tethered thioester for subsequent oxidative modification of the fumaramoyl group. DdaC catalyzes Fe(II)- and α-ketoglutarate-dependent epoxidation of the covalently bound N(β)-fumaramoyl-l-2,3-diaminopropionyl-S-DdaD species to generate N(β)-epoxysuccinamoyl-DAP (DAP = 2,3-diaminopropionate) in thioester linkage to DdaD. After hydrolytic release, N(β)-epoxysuccinamoyl-DAP can be ligated to l-valine by the ATP-dependent ligase DdaF to form the natural antibiotic N(β)-epoxysuccinamoyl-DAP-Val.  相似文献   
43.
Sterically stabilized polystyrene latexes were prepared by aqueous emulsion polymerization using a poly(ethylene imine) (PEI) stabilizer in the presence of 4-vinylbenzyl chloride (4-VBC; 1.0 wt % based on styrene). Partial quaternization of the amine groups on the PEI chains by 4-VBC occurs in situ, hence producing a chemically grafted steric stabilizer. Such 4-VBC-modified PEI chains were grafted more efficiently onto the polystyrene particles than unmodified PEI, as judged by aqueous electrophoresis, XPS, and nitrogen microanalysis. Moreover, partially quaternized PEI gave significantly smaller polystyrene particles than those synthesized in the absence of any PEI stabilizer or those synthesized using unmodified PEI. The partially quaternized PEI-stabilized polystyrene latex proved to be an effective emulsifier at pH 9, forming stable oil-in-water Pickering emulsions when homogenized (12,000 rpm, 2 min, 20 °C) with four model oils, namely, n-dodecane, methyl myristate, isononyl isononanoate, and sunflower oil. The primary and/or secondary amine groups on the PEI stabilizer chains were successfully cross-linked using three commercially available polymeric reagents, namely, tolylene 2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TDI), poly(propylene glycol) diglycidyl ether (PPG-DGE), or poly(ethylene glycol) diglycidyl ether (PEG-DGE). Cross-linking with the former reagent led to robust colloidosomes that survived the removal of the internal oil phase on washing with excess alcohol, as judged by optical microscopy and SEM. PPG-TDI reacted very rapidly with the PEI stabilizer chains, with cross-linking being achieved during homogenization. Well-defined colloidosomes could be formed only by using sunflower oil and isononyl isononanoate with this cross-linker at 20 °C. However, cooling to 0 °C allowed colloidosomes to be formed using n-dodecane, presumably because of the slower rate of cross-linking at this reduced temperature. PPG-DGE proved to be a more generic cross-linker because it formed robust colloidosomes with all four model oils. However, cross-linking was much slower than that achieved using PPG-TDI, with intact colloidosomes being formed only after ~12 h at 20 °C. The PEG-DGE cross-linker allowed cross-linking to be conducted at 20 °C from the aqueous phase (rather from within the oil droplets for the oil-soluble PPG-TDI or PPG-DGE cross-linkers). In this case, well-defined colloidosomes were obtained at 50 vol % with surprisingly little intercolloidosome aggregation, as judged by laser diffraction studies.  相似文献   
44.
The geometric structures of small cationic rhodium clusters Rh(n)(+) (n = 6-12) are investigated by comparison of experimental far-infrared multiple photon dissociation spectra with spectra calculated using density functional theory. The clusters are found to favor structures based on octahedral and tetrahedral motifs for most of the sizes considered, in contrast to previous theoretical predictions that rhodium clusters should favor cubic motifs. Our findings highlight the need for further development of theoretical and computational methods to treat these high-spin transition metal clusters.  相似文献   
45.
Highly crystalline, nanostructured, three-dimensional β-PbO2 coatings were successfully obtained by galvanostatic deposition from baths containing aqueous lead(II) and methanesulfonic acid (CH3SO3H). This constitutes a much more environmentally friendly methodology compared to plating of β-PbO2 in HNO3. The deposits exhibited high quality and good adherence. The crystallite size was in the range 20–30 nm and AFM imaging revealed very uniform, rough deposits (i.e., 255–275 nm rms). The oxidative destruction of Methyl Orange azo dye was studied by electrochemical advanced oxidation processes (EAOPs). An electro-Fenton process with a high surface area carbon-felt cathode performed better than the single anodic oxidation. Rapid and complete decolorisation was achieved following pseudo first-order kinetics. The stability of the β-PbO2 electrodes during the electrolyses was also demonstrated.  相似文献   
46.
[reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).  相似文献   
47.
Functional-based screening of crude β-galactosidase activities from 42 yeast strains resulted in the selection of a single enzyme of potential interest as a digestive supplement. β-Galactosidase produced by Kluyveromyces marxianus DSM5418 was purified to homogeneity by a combination of gel filtration, ion-exchange, and hydroxylapatite chromatographies. The denatured (123 kDa) and native molecular masses (251 kDa) suggest that the enzyme is a homodimer. The optimum pH and temperature of the purified enzyme were 6.8 and 37°C, respectively. The unpurified β-galactosidase in particular displayed a high level of stability when exposed to simulated intestinal conditions in vitro for 4 h. Matrix-assisted laser desorption ionization mass sectrometry analysis revealed that the enzyme's trypsin-generated peptide mass fingerprint shares several peptide fragment hits with β-galactosidases from Kluyveromyces lactis. This confirms the enzyme's identity and indicates that significant sequence homology exists between these enzymes.  相似文献   
48.
An issue with most gas chromatographic detectors is their inability to deconvolve coeluting isomers. Dimethylnaphthalenes are a class of compounds that can be particularly difficult to speciate by gas chromatography – mass spectrometry analysis, because of their significant coelution and similar mass spectra. As an alternative, a vacuum ultraviolet spectroscopic detector paired with gas chromatography was used to study the systematic deconvolution of mixtures of coeluting isomers of dimethylnaphthalenes. Various ratio combinations of 75:25; 50:50; 25:75; 20:80; 10:90; 5:95; and 1:99 were prepared to test the accuracy, precision, and sensitivity of the detector for distinguishing overlapping isomers that had distinct, but very similar absorption spectra. It was found that, under reasonable injection conditions, all of the pairwise overlapping isomers tested could be deconvoluted up to nearly two orders of magnitude (up to 99:1) in relative abundance. These experimental deconvolution values were in agreement with theoretical covariance calculations performed for two of the dimethylnaphthalene isomers. Covariance calculations estimated high picogram detection limits for a minor isomer coeluting with low to mid-nanogram quantity of a more abundant isomer. Further characterization of the analytes was performed using density functional theory computations to compare theory with experimental measurements. Additionally, gas chromatography – vacuum ultraviolet spectroscopy was shown to be able to speciate dimethylnaphthalenes in jet and diesel fuel samples.  相似文献   
49.
Optical absorption and photoluminescence (PL) properties of colloidal TiO(2) nanotubes, produced by the alkali hydrothermal method, were studied at room temperature in the range 300-700 nm. Nanotubes having an internal diameter in the range 2.5-5 nm have very similar optical properties, in contrast to the expected behavior for quasi-1-D systems. This is explained by the complete thermal smearing of all 1-D effects, due to the large effective mass of charge carriers in TiO(2), resulting in an apparent 2-D behavior of TiO(2) nanotubes.  相似文献   
50.
Control of chemoselectivity is one of the most challenging problems facing chemists and is particularly important in the synthesis of bioactive compounds and medications. Herein, the first highly chemoselective tandem C(sp3)–H arylation/[1,2]-Wittig rearrangement of pyridylmethyl ethers is presented. The efficient and operationally simple protocols enable generation of either arylation products or tandem arylation/[1,2]-Wittig rearrangement products with remarkable selectivity and good to excellent yields (60–99%). Choice of base, solvent, and reaction temperature play a pivotal role in tuning the reactivity of intermediates and controlling the relative rates of competing processes. The novel arylation step is catalyzed by a Pd(OAc)2/NIXANTPHOS-based system via a deprotonative cross-coupling process. The method provides rapid access to skeletally diverse aryl(pyridyl)methanol core structures, which are central components of several medications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号