首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   5篇
化学   71篇
力学   1篇
数学   5篇
物理学   3篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   14篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1984年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
41.
A potentiometric method was used to determine the stability constants for the various complexes of copper(II) with carbamoylcholine chloride (C) drug as a ligand in the presence of some biorelevant amino acid constituents like glycine (Gly), alanine (Ala), valine (Val), proline (Pro), β-phenylalanine (Phe), S-methylcysteine (Met), threonine (Thr), ornithine (Orn), lysine (Lys), histidine (Hisd), histamine (Hist), and imidazole (Imz) as ligands (L). Stability constants of complexes were determined at 25°C and I = 0.10 mol/L NaNO3. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of Δlog K and % R.S. values. Cu(II) complexes of drug C were synthesized in 1:1 and 1:1:1 M ratios of copper to drug [Cu(C)(NO3)2] (1) and copper to drug to glycine[Cu(C)(Gly)(NO3)].NO3 (2), respectively. Glycine ternary complex with drug and copper [Cu(C)(Gly)(NO3)].NO3 was considered as representative amino acid. The complexes 1 and 2 were isolated and characterized using various physicochemical and spectral techniques. Both complexes 1 and 2 were found to have magnetic moments corresponding to one unpaired electron. The possible square planar and square-pyramidal geometries of the copper (II) complexes were assigned on the basis of electron paramagnetic resonance (EPR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), ultraviolet–visible (UV–Vis) and infrared (IR) spectral studies, and the discrete Fourier transform method from DMOL3 calculations. Antioxidant activities of all the synthesized compounds were also investigated.  相似文献   
42.
The pharmacological activities of thiazole and pyrazole moieties as antimicrobial and anticancer agents have been thoroughly described in many literature reviews. In this study, a convenient synthesis of novel pyrazolo[5,1-b]thiazole-based heterocycles was carried out. The synthesized compounds were characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry. Some selected examples were screened and evaluated for their antimicrobial and anticancer activities and showed promising results. These products could serve as leading compounds in the future design of new drug molecules.  相似文献   
43.
In this study, three middle range α-olefin monomers including 1-hexene, 1-octene, and 1-decene were oligomerized using conventional AlCl3/H2O catalytic system. Molecular weight and microstructure of the oligomers were analyzed by GPC and 1HNMR, respectively. By 1HNMR spectra, both internal (CHR=CHR′ and CHR=CR′R′′) and external (CH2=CR′R′′) olefins containing di and tri-substituted C=C bonds were detected. After successful oligomerization, synthesized polyα-olefins underwent hydrogenation process using Pd(0)-Hal catalyst to yield synthetic oils of PHex, POct, and PDec, respectively and then completion of the hydrogenation was confirmed by 1HNMR spectroscopy. The microstructure of the synthesized oligomers was rationalized using the ratio under the peak of CH?+?CH2/CH3 hydrogens (S1/S2) in 1HNMR spectra and the degree of oligomerization obtained from Mn. According to the results, the best match between theoretical and real S1/S2 is obtained when considering double bond isomerization in the synthesized PAOs. By knowing PAO molecular weight, a relationship between monomer type and S1/S2 in the PAO homopolymers was detected. Our suggested methodology can be generalized to the unknown PAO homopolymers to unravel their monomer type by simple 1HNMR and GPC analyses.  相似文献   
44.
The application of a novel fast optical‐imaging camera, TimepixCam, to molecular photoionization experiments using the velocity‐map imaging technique at a free‐electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time‐stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts, for example, in the timing and pulse energy of the free‐electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. In principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.  相似文献   
45.
The production of effective drugs has continuously been a challenging process for researchers due to the occurrence of resistive diseases. Drugs derived from natural product-based compounds as an active scaffold have gained interest in drug development due to a wide range of biological properties. Benzoheterodiazepines, a natural product derivative of bicyclic chalcones have been widely reported with various therapeutic potentials. This review discusses current synthetic methods in the preparation of benzoheterodiazepine derivatives (i.e., homocyclic benzoheterodiazepine, heterocyclic benzoheterodiazepine, bis-benzoheterodiazepine, and fused benzoheterodiazepine) via two-pot and one-pot synthetic routes. Several reaction protocols following both synthetic routes have been developed for efficient and higher yields that offer access to different functionalization of benzoheterodiazepines are comprehensively described. This review is important in the heterocyclic chemistry of benzoheterodiazepines and pharmacological industries in drug development processes.  相似文献   
46.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   
47.
Metabolic disorders often lead to cardiac complications. Metabolic deregulations during diabetic conditions are linked to mitochondrial dysfunctions, which are the key contributing factors in cardiac hypertrophy. However, the underlying mechanisms involved in diabetes-induced cardiac hypertrophy are poorly understood. In the current study, we initially established a diabetic rat model by alloxan-administration, which was validated by peripheral glucose measurement. Diabetic rats displayed myocardial stiffness and fibrosis, changes in heart weight/body weight, heart weight/tibia length ratios, and enhanced size of myocytes, which altogether demonstrated the establishment of diabetic cardiac hypertrophy (DCH). Furthermore, we examined the expression of genes associated with mitochondrial signaling impairment. Our data show that the expression of PGC-1α, cytochrome c, MFN-2, and Drp-1 was deregulated. Mitochondrial-signaling impairment was further validated by redox-system dysregulation, which showed a significant increase in ROS and thiobarbituric acid reactive substances, both in serum and heart tissue, whereas the superoxide dismutase, catalase, and glutathione levels were decreased. Additionally, the expression levels of pro-apoptotic gene PUMA and stress marker GATA-4 genes were elevated, whereas ARC, PPARα, and Bcl-2 expression levels were decreased in the heart tissues of diabetic rats. Importantly, these alloxan-induced impairments were rescued by N-acetyl cysteine, ascorbic acid, and selenium treatment. This was demonstrated by the amelioration of myocardial stiffness, fibrosis, mitochondrial gene expression, lipid profile, restoration of myocyte size, reduced oxidative stress, and the activation of enzymes associated with antioxidant activities. Altogether, these data indicate that the improvement of mitochondrial dysfunction by protective agents such as N-acetyl cysteine, selenium, and ascorbic acid could rescue diabetes-associated cardiac complications, including DCH.  相似文献   
48.
A series of (E)-1-(4-alkyloxyphenyl)-3-(hydroxyphenyl)-prop-2-en-1-one have been successfully synthesised via Claisen-Schmidt condensation. The synthesised chalcone derivatives consisted of hydroxyl groups at either ortho, meta or para position and differed in the length of the alkyl groups, C (n) H(2) (n) (+1,) where n?=?6, 10, 12 and 14. The structures of all compounds were defined by elemental analysis, IR, (1)H- and (13)C-NMR. The antimicrobial studies were carried out against wild-type Escherichia coli American Type Culture Collection 8739 to evaluate the effect of the hydroxyl and the alkyl groups of the synthesised chalcones. All the synthesised compounds have shown significant antimicrobial activities. The optimum inhibition was dependent on the position of the hydroxyl group as well as the length of the alkyl chains.  相似文献   
49.
The cyclisation of mono-protected and bis-protected guanidines 8aj under standard iodocyclisation conditions (I2/K2CO3) gave the guanidine heterocycles 925 via either a direct cyclisation or by a cyclisation/ring-contraction process, which could be controlled by careful selection of conditions.  相似文献   
50.
The synthesis of some novel crown and thiacrown ethers via the reaction of 2,3-bis(4-hydroxyphenyl) or 2,3-bis(4-mercaptophenyl)quinoxalines and pyridopyridazine with diethylene and triethylene glycol ditosylate is described. The complexing ability of compounds 5b and 5h, as the representatives of both groups of compounds, with alkali and alkali earth metal cations were measured by the solvent extraction method. The results showed that crown ether 5b comparatively had more affinity towards the Mg2+ cation, while thiacrown ether 5h had greater affinity towards the Ca2+ cation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号