首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1491篇
  免费   75篇
  国内免费   21篇
化学   1170篇
晶体学   9篇
力学   29篇
数学   117篇
物理学   262篇
  2023年   25篇
  2022年   83篇
  2021年   61篇
  2020年   74篇
  2019年   86篇
  2018年   94篇
  2017年   76篇
  2016年   92篇
  2015年   67篇
  2014年   91篇
  2013年   145篇
  2012年   135篇
  2011年   111篇
  2010年   75篇
  2009年   71篇
  2008年   53篇
  2007年   32篇
  2006年   24篇
  2005年   27篇
  2004年   12篇
  2003年   17篇
  2002年   18篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
排序方式: 共有1587条查询结果,搜索用时 15 毫秒
121.
The catalytic activity of Ni/MgO catalysts was studied for the oxidative coupling of methane (OCM). The catalysts were characterized using transmission electron microscope (TEM) and XRD. The increase in C2+ selectivity of Ni/MgO was attributed to the presence of bulk dislocations and MgNiO2 phase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
122.
123.
The tandem catalysis system including the trimerization catalyst of CrCl3/SNS (SNS = bis-(2-pentylsulfanyl-ethyl)-amine) (Cat 1) and the copolymerization catalyst Cat 2 of Cr/SiO2 (Grace 643) has been prepared and used to the synthesis of branched polyethylene. The optimum polymerization conditions were found to be as follows: chromium concentration 0.2 wt %, ethylene pressure 23 bar, solvent hexane, polymerization temperature 90°C, co-catalyst triethylaluminum. The optimally prepared polyethylene was characterized thermally and morphologically. Appearance of α and γ hydrogens in ethylene-1-hexene copolymer confirms the presence of branches in polyethylene backbone.  相似文献   
124.
In this study, a new Cr(III)-imprinted polymer (Cr(III)-IIP) is prepared from CrCl3·6H2O, methacrylic acid functional monomer, ethyleneglycoldimethacrylate cross-linking agent, 2,2?-azobisisobutyronitrile radical initiator and 2,2-(azanediylbis (ethane-2,1-diyl))bis(isoindoline-1,3-dione) ligand. To obtain the maximum adsorption capacity, the optimum condition was studied through pH, type and concentration of eluent, IIP weight, sample volume as well as the adsorption and desorption times. The Cr(III) ion content was determined via flame atomic absorption spectrometer. In optimum conditions, the adsorption capacity of the IIP for Cr(III) was obtained to be 74.65 mg g?1, using 50 mg of IIP and the initial pH solution of 3.0. Both the adsorption and desorption times for quantitative analyses of Cr(III) ions were 15 and 5 min; respectively. After elution of the adsorbed ions by 3 mL of 4 mol L?1 HNO3 aqueous solution, the established IIP-based SPE procedure provides a reasonable pre-concentration factor of 100. The IIP-based pre-concentration method provides a low detection limit of 1.7 µg L?1 with good repeatability (RSD?=?3.22%). Reusability studies confirmed that synthesis IIP is reusable and recoverable up to six cycles. According to the selectivity experiments, it was concluded that the prepared sorbent possesses more affinity toward Cr(III) ions than other ions such as Al3+, Pb2+, Cu2+, Mn2+, Fe2+, Zn2+, and Ni2+ ions. To evaluate the potential applicability of the proposed separation method, the pre-concentration and determination of trace amounts of Cr(III) were performed successfully in food samples with complex matrices, a bestial sample (i.e. cow liver) and an herbal product (i.e., broccoli) as real samples.  相似文献   
125.
There are many different strategies to decrease the incidence of infection of medical device and food related containers. One way to prevent infection is by modifying the polymers used in making the devices and containers. Incorporation of antimicrobial agents in the bulk material or in formulations of medical devices production has been considered a viable alternative for systemic application of antibiotics. In this article, preparation of a series of triazole containing polymers, poly(triazole-amide-imide)s (PTAI)s and poly(triazole-amide) (PTA)s, and their monomers are reported. These polymers were readily soluble in a variety of organic solvents, showed significant thermal properties and also viscosities in the range of 0.55–0.66 dL/g. They have been tested against a range of Gram-positive and Gram-negative pathogens. The results indicated that these novel polymers containing triazole moiety in their repeating units can effectively control Gram-positive and negative pathogens and their physic-chemical properties besides their antibacterial characteristics make them unique candidate for using in the manufacturing of the medical devices.  相似文献   
126.
In this work, acid functionalized multi-wall carbon nanotubes (MWCNTs) were modified with imidazolium-based ionic liquids. The selective oxidation of various alcohols with hydrogen peroxide catalyzed by[PZnMo2W9O39]5-, ZnPOM, supported on ionic liquids-modified with MWCNTs, MWCNTAPIB, is reported. This catalyst[ZnPOM@APIB-MWCNT], was characterized by X-ray diffraction, scanning electron microscopy (SEM) and FT-IR spectroscopic methods. This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.  相似文献   
127.
Magnetically separable nano core–shell Fe3O4@Cu(OH)x with 22 % Cu content was prepared by the addition of sodium hydroxide to a mixture of CuCl2·2H2O and nano Fe3O4 in water. Characterization of the impregnated copper hydroxide was carried out by X-ray fluorescence (XRF), X-ray diffraction (XRD) atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), value stream mapping (VSM) and Brunauer–Emmett–Teller (BET) analysis. The core–shell nanocatalyst exhibited the excellent catalytic activity toward reduction of various nitro compounds to the corresponding amines with NaBH4. All reactions were carried out in H2O (55–60 °C) within 3–15 min to afford amines in high to excellent yields. Reusability of core–shell Cu(OH)x catalyst was examined 9 times without significant loss of its catalytic activity.  相似文献   
128.
Di(1H-tetrazol-5-yl)methane is employed as a new electron acceptor group in the synthesis of two metal-free organic dyes containing triphenylamine donor group. Dye-sensitized nanocrystalline TiO2 solar cell (DSSC) applying these novel dyes is constructed for consideration of their photovoltaic properties. The electronic properties of the dyes are also considered with the aid of theoretical calculations. The DSSC constructed from 4-(2,2-di(1H-tetrazol-5-yl)vinyl)-N,N-diphenylaniline (T1) shows a short-circuit photocurrent density of 13.38 mA cm?2, an open circuit voltage of 578 mV, and a fill factor of 0.54, with a resulted solar energy-to-electricity conversion efficiency of 4.18% under simulated 1 sun irradiation (100 mW cm?2). This result reveals that the dye with the di(1H-tetrazol-5-yl)methane anchoring group injects more electrons to the conduction band of TiO2 in comparison with its analogs with single tetrazole ring in their anchoring group. It is found that in spite of a red-shift of the absorption spectrum resulted from the lengthening of the molecule, the dye with two di(1H-tetrazol-5-yl)methane groups gives lower performance than the dye with a single electron acceptor.  相似文献   
129.
This study aimed at polymerization of methyl methacrylate with novel catalysts in the atom transfer radical polymerization (ATRP) condition at 90 °C. This was accomplished using CuBr/N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (CuBr–AEAPTMS) as a homogeneous catalyst and one time with CuBr@AEAPTMS/SBA-15 as a heterogeneous catalyst. Catalysts were characterized using TGA, FT-IR, and UV–Vis spectroscopy. The structural analysis of the polymer was carried out by 13C NMR spectroscopy and GPC. Three characteristic parts of polymer produced by ATRP method including the initiator, monomer units, and end group was shown in 13C NMR spectra. In addition, the presence of C–Br unit showed that the polymerization process is alive. The 1H NMR analysis was used for kinetic investigation of methyl methacrylate polymerization with homogeneous and heterogeneous catalysts that showed high monomer conversion (98 and 90% after 35 min, respectively) and good control of molecular weight with a dispersity (Р= 1.5–1.7). In addition, the plot of ln ([monomer]0/[monomer] t ) versus time gave linear relationships indicating a constant concentration of the propagating species throughout the polymerization. Finally, the results of the polymerization using heterogeneous catalyst compared with homogeneous catalyst revealed that it was according to ATRP method.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号