首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   47篇
  国内免费   2篇
化学   408篇
晶体学   2篇
力学   18篇
数学   53篇
物理学   67篇
  2023年   11篇
  2022年   12篇
  2021年   12篇
  2020年   21篇
  2019年   23篇
  2018年   22篇
  2017年   13篇
  2016年   31篇
  2015年   28篇
  2014年   21篇
  2013年   24篇
  2012年   59篇
  2011年   50篇
  2010年   31篇
  2009年   18篇
  2008年   38篇
  2007年   24篇
  2006年   16篇
  2005年   27篇
  2004年   12篇
  2003年   13篇
  2002年   15篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有548条查询结果,搜索用时 15 毫秒
81.
82.
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H…π, or ion–π interactions. The organic salt (TrOH·iBA) formed by a facile proton‐transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7‐oxocyclohepta‐1,3,5‐trien‐1‐olate, C4H12N+·C7H5O2, has been investigated by X‐ray crystallography, with complementary quantum‐chemical and statistical‐database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice‐packing phenomena. The crystal structure deduced from low‐temperature diffraction measurements displays extensive hydrogen‐bonding networks, yet shows little evidence of the aryl forces (viz. π–π, C—H…π, and ion–π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton‐donating and proton‐accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven‐membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen‐bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid‐based complex, combined with unambiguous signatures of enhanced proton‐delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.  相似文献   
83.
A series of biphenyl-based N(3)O ligands, 2, 4, 6, and 8 were synthesized and their Cu(II) complexes prepared. These complexes were characterized by a combination of elemental analysis, FAB-MS, UV-vis spectroscopy and electrochemistry. The structure of [Cu(N(3)O-mpy-NO2)Cl2], 12 [N(3)O-mpy = 2-(3-pyridylmethylimino)-2'-(2-methylaminophenol)biphenyl], was solved and showed that the ligand coordinates through the three nitrogens with the phenol oxygen uncoordinated. Titration of azide anion into solutions of the complexes in methanol resulted in the appearance of a new band between 485-495 nm at the expense of the starting peak at 380 nm. Cyclic voltammetry studies indicated that the complexes undergo quasi-reversible one-electron reductions in acetonitrile at potentials between 0.13-0.58 V vs. Ag/AgCl. The complexes were found to be weakly active for the oxidation of di-tert-butyl catechol (DTBC).  相似文献   
84.
85.
86.
87.
Let be a countably infinite set, the group of permutations of , and the monoid of self-maps of . Given two subgroups , let us write if there exists a finite subset such that the groups generated by and are equal. Bergman and Shelah showed that the subgroups which are closed in the function topology on S fall into exactly four equivalence classes with respect to . Letting denote the obvious analog of for submonoids of E, we prove an analogous result for a certain class of submonoids of E, from which the theorem for groups can be recovered. Along the way, we show that given two subgroups which are closed in the function topology on S, we have if and only if (as submonoids of E), and that for every subgroup (where denotes the closure of G in the function topology in S and its closure in the function topology in E).  相似文献   
88.
A new polymorph of CeNiSb3 has been grown from a Sn flux and characterized by single-crystal X-ray diffraction. beta-CeNiSb3 crystallizes in the orthorhombic space group Pbcm (No. 57) with Z = 8. The unit cell parameters are a = 12.9170(2) A, b = 6.1210(5) A, c = 12.0930(6) A, and V = 956.13(9) A3. Its layered structure contains structural motifs similar to that of the first form of CeNiSb3 and consists of Ce atoms inserted between anionic layers of nearly square infinity2[Sb] nets and distorted infinity2[NiSb2] octahedra. We report the synthesis, magnetization, electrical resistivity, and specific heat of the new form of CeNiSb3 and compare the structures and physical properties of both polymorphs.  相似文献   
89.
Double the fun! Singlet–triplet dual emission at ambient temperature has been achieved in compounds containing a triarylboron acceptor and an N‐(2′‐pyridyl)‐7‐azaindolyl donor group bridged by a tetrahedral Si linker (see figure). PtII chelation and chelate‐mode switching from N,N to N,C have been found to greatly enhance phosphorescent emission. Furthermore, both singlet and triplet emission bands are responsive to fluoride ions.

  相似文献   

90.
Single crystals of the new Zintl phases AIn2P2 [A = Ca (calcium indium phosphide), Sr (strontium indium phosphide) and Ba (barium indium phosphide)] have been synthesized from a reactive indium flux. CaIn2P2 and SrIn2P2 are isostructural with EuIn2P2 and crystallize in the space group P63/mmc. The alkaline earth cations A are located at a site with m symmetry; In and P are located at sites with 3m symmetry. The structure type consists of layers of A2+ cations separated by [In2P2]2− anions that contain [In2P6] eclipsed ethane‐like units that are further connected by shared P atoms. This yields a double layer of six‐membered rings in which the In—In bonds are parallel to the c axis and to one another. BaIn2P2 crystallizes in a new structure type in the space group P21/m with Z = 4, with all atoms residing on sites of mirror symmetry. The structure contains layers of Ba2+ cations separated by [In2P2]2− layers of staggered [In2P6] units that form a mixture of four‐, five‐ and six‐membered rings. As a consequence of this more complicated layered structure, both the steric and electronic requirements of the large Ba2+ cation are met.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号