首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   7篇
化学   69篇
晶体学   1篇
数学   3篇
物理学   11篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   10篇
  2018年   3篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   11篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
71.
ABSTRACT

The straightforward synthesis of redox-active arylazothioformamide (ATF) ligands allows for electronic diversity as to measure the weak-binding interactions of transition metal salts in supramolecular coordination complexes. A small library of para-substituted ATFs was created with varied electronic components to evaluate how electron-donating and electron-withdrawing groups alter binding association constants. Following full characterisation, including single-crystal X-ray diffraction, UV-Vis titration studies were performed using copper(I) salts to assess the Host:Guest binding. Simultaneously, substitutions were evaluated computationally by modelling the Gibbs’ Free Energy change of the rotational barriers from ligand crystal structures to the predicted metal coordinating species and the various complexes. The multi-model association calculations and experimental measurements interplay to help limit error propagations and reliably predict the more accurate binding models. Through a thorough investigation it was found that experimentally, each ligand supports a 2:1 binding model yet may employ unique binding mechanisms to achieve that model.  相似文献   
72.
Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.  相似文献   
73.
We describe a new T‐Jump/time‐of‐flight (TOF) mass spectrometer for the time‐resolved analysis of rapid pyrolysis chemistry of solids and liquids, with a focus on energetic materials. The instrument employs a thin wire substrate which can be coated with the material of interest, and can be rapidly heated (105 K/s). The T‐Jump probe is inserted within the extraction region of a linear TOF mass spectrometer, which enables multiple spectra to be obtained during a single reaction event. By monitoring the electrical characteristics of the heated wire, the temperature could also be obtained and correlated to the mass spectra. As examples, we present time‐resolved spectra for the ignition of nitrocellulose and RDX. The fidelity of the instrument is demonstrated in the spectra presented which show the temporal formation and decay of several species in both systems. The simultaneous measurement of temperature enables us to extract the ignition temperature and the characteristic reaction time. The time‐resolved mass spectra obtained show that these solid energetic material reactions, under a rapid heating rate, can occur on a time scale of milliseconds or less. While the data sampling rate of 10 000 Hz was used in the present experiments, the instrument is capable of a maximum scanning rate of up to ~30 kHz. The capability of high‐speed time‐resolved measurements offers an additional analytical tool for the characterization of the decomposition, ignition, and combustion of energetic materials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
74.
Fluorescent dyes have been widely utilized as chemical sensors and in photodynamic therapy, but exploitation of their redox‐active nature in chemical reactions has remained mostly unexplored. This report describes the isolation of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY)‐based radical. The redox‐active nature of the BODIPY compound can be utilized in combination with a guanidine center, the basicity of which can be manipulated by greater than 14 pKa units, to promote the conversion of protons and electrons into H‐atoms for transfer to substrate molecules.  相似文献   
75.
Molecular dynamics simulations are used to probe the structure and stability of alkanethiolate self-assembled monolayers (SAMs) on gold nanoparticles. We observed that the surface of gold nanoparticles becomes highly corrugated by the adsorption of the SAMs. Furthermore, as the temperature is increased, the SAMs dissolve into the gold nanoparticle, creating a liquid mixture at temperatures much lower than the melting temperature of the gold nanoparticle. By analyzing the mechanical and chemical properties of gold nanoparticles at temperatures below the melting point of gold, with different SAM chain lengths and surface coverage properties, we determined that the system is metastable. The model and computational results that provide support for this hypothesis are presented.  相似文献   
76.
The paper surveys the binding of anions to the unsaturated 16e Lewis acid [Cp*Ir(TsDPEN)](+) ([1H](+)), where TsDPEN is racemic H(2)NCHPhCHPhNTs(-). The derivatives Cp*IrX(TsDPEN) were characterized crystallographically for X(-) = CN(-), Me(C═NH)S(-), NO(2)(-), 2-pyridonate, and 0.5 MoS(4)(2-). [(1H)(2)(μ-CN)](+) forms from [1H](+) and 1H(CN). Aside from 2-pyridone, amides generally add reversibly and bind to Ir through N. Thioacetamide binds irreversibly through sulfur. Compounds of the type Cp*IrX(TsDPEN) generally form diastereoselectively, although diastereomeric products were observed for the strong ligands (X = CN(-), H(-) (introduced via BH(4)(-)), or Me(C═NH)S(-)). Related experiments on the reaction (p-cymene)Ru(TsDPEN-H) + BH(4)(-) gave two diastereomers of (p-cymene)RuH(TsDPEN), the known hydrogenation catalyst and a second isomer that hydrogenated acetophenone more slowly. These experiment provide new insights into the enantioselectivity of these catalysts. Diastereomerization in all cases was first order in metal with modest solvent effects. The diphenyl groups are generally diequatorial for the stable diastereomers. For the 2-pyridonate adduct, axial phenyl groups are stabilized in the solid state by puckering of the IrN(2)C(2) ring induced by intramolecular hydrogen-bonding. Crystallographic analysis of [Cp*Ir(TsDPEN)](2)(MoS(4)) revealed a unique example of a κ(1),κ(1)-tetrathiometallate ligand. Cp*Ir(SC(NH)Me)TsDPEN) is the first example of a κ(1)-S-thioamidato complex.  相似文献   
77.
The series of o-benzylphosphino-boranes, o-(R(2)B)C(6)H(4)CH(2)PtBu(2) (R = Cl 3, Ph 4, Cy 6, C(6)F(5) 7, Mes 8) and o-(BBN)C(6)H(4)CH(2)PtBu(2) (5), were synthesized from reactions of the respective chloroboranes with the lithiated benzyl-phosphine. In an analogous fashion, the α-methylbenzyl(N,N-dimethyl)amine-boranes o-(R(2)B)C(6)H(4)CH(Me)NMe(2) (R = Cl 10, Ph 11, Cy 12, C(6)F(5) 13, Mes 14) were prepared. While these species were inactive in the catalytic hydrogenation of tBuN═CHPh, compounds 7, 8, and 14 did react with H(2) at elevated temperatures (100 °C), resulting in the elimination of HC(6)F(5) and mesitylene, respectively. In the latter case, the species o-((Mes)HB)C(6)H(4)CH(Me)NMe(2) 15 was isolated. 14 was also shown to react with H(2)O to give the species o-((Mes)(HO)B)C(6)H(4)CH(Me)NMe(2) 16 with the loss of mesitylene. The structure of these compounds and the nature of these reactions were also probed spectroscopically, crystallographically, and computationally. The energies for the products of hydrogenation, the phosphonium and ammonium hydridoborates, were computed. In all cases, these products were endothermic with respect to the precursor phosphine-boranes and amine-boranes and H(2). The barriers to H(2) activation were found to be in the range of 24-38 kcal/mol. These theoretical studies also demonstrate that the steric bulk around the boron center dramatically affects the activation barrier for H(2) activation, while the Lewis acidity of the borane has the largest effect on the stabilization of the resulting onium-borohydride. In the case of the elimination reactions, the driving forces appear to be the loss of arene byproduct and formation of a strong donor-acceptor bond.  相似文献   
78.
Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80?% measured by ATR-FTIR and ≈90?% by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S–Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80?% when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG?+?BSA?+?AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA.
Figure
Schematic displacement of ligands from a AuNP by DTT  相似文献   
79.
A modular approach for the synthesis of hyaluronic acid hydrogels using orthogonal chemoselective reactions for subsequent enzymatic decomposition to nanoparticles is described.  相似文献   
80.
We present a study of internal pressure and surface tension of bare and hydrogen coated silicon nanoparticles of 2-10 nm diameter as a function of temperature, using molecular dynamics simulations employing a reparametrized Kohen-Tully-Stillinger interatomic potential. The internal pressure was found to increase with decreasing particle size but the density was found to be independent of the particle size. We showed that for covalent bond structures, changes in surface curvature and the associated surface forces were not sufficient to significantly change bond lengths and angles. Thus, the surface tension was also found to be independent of the particle size. Surface tension was found to decrease with increasing particle temperature while the internal pressure did not vary with temperature. The presence of hydrogen on the surface of a particle significantly reduces surface tension (e.g., drops from 0.83 J/m(2) to 0.42 J/m(2) at 1500 K). The computed pressure of bare and coated particles was found to follow the classical Laplace-Young equation.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] [6] [7] 8 [9] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号