首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21691篇
  免费   4040篇
  国内免费   3198篇
化学   15729篇
晶体学   299篇
力学   1336篇
综合类   302篇
数学   2589篇
物理学   8674篇
  2024年   55篇
  2023年   386篇
  2022年   749篇
  2021年   798篇
  2020年   910篇
  2019年   894篇
  2018年   768篇
  2017年   730篇
  2016年   1014篇
  2015年   1092篇
  2014年   1327篇
  2013年   1634篇
  2012年   1971篇
  2011年   2062篇
  2010年   1484篇
  2009年   1497篇
  2008年   1595篇
  2007年   1388篇
  2006年   1307篇
  2005年   1088篇
  2004年   910篇
  2003年   695篇
  2002年   705篇
  2001年   601篇
  2000年   470篇
  1999年   420篇
  1998年   328篇
  1997年   332篇
  1996年   287篇
  1995年   241篇
  1994年   224篇
  1993年   161篇
  1992年   113篇
  1991年   129篇
  1990年   110篇
  1989年   76篇
  1988年   75篇
  1987年   64篇
  1986年   46篇
  1985年   33篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   18篇
  1980年   16篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Breaking the electroneutrality of sp2 carbon lattice is a viable way for nanocarbon material to modulate the charge delocalization and to further alter the electrocatalytic activity. Positive charge spreadsheeting is preferable for catalyzing the oxygen reduction reaction (ORR) and other electrochemical reactions. Analogously to the case of intramolecular charge transfer by heteroatom doping, electrons in the conjugated carbon lattice can be redistributed by the intermolecular charge transfer from the nanocarbon material to the polyelectrolyte. A copolymeric electrolyte, epichlorohydrin-dimethylamine copolymer (EDC) was synthesized. The EDC-modified carbon nanotube (CNT) hybrid was subsequently fabricated by sonication treatment and served as a metal-free carbonaceous electrocatalyst with remarkable catalytic activity and stability. The resultant hybrid presents positive charge spreadsheeting on CNT as a result of the interfacial electron transfer from CNT to EDC. DFT calculations were further carried out to reveal that the enhancement of the wrapped EDC polyelectrolyte originates from the synergetic effect of the quaternary ammonium-hydroxyl covalently bonded structure. The CNT-EDC hybrid not only provides an atomically precise regulation to modulate nanocarbon materials from inactive carbonaceous materials into efficient metal-free catalysts, but it also opens new avenues to develop metal-free catalysts with well-defined and highly active sites.  相似文献   
942.
It remains challenging to rationally synthesize iron/nitrogen-doped carbon (Fe/N-C) catalysts with rich Fe−Nx atomic active sites for improved oxygen reduction reaction (ORR) electrocatalysis. A highly efficient Fe/N-C catalyst, which has been synthesized through a spatial isolation strategy, is reported. Derived from bioinspired polydopamine (PDA)-based hybrid microsphere precursors, it is a multifunctional carrier that loads atomically dispersed Fe3+/Zn2+ ions through coordination interactions and N-rich melamine through electrostatic attraction and covalent bonding. The Zn2+ ions and melamine in the precursor efficiently isolate Fe3+ atoms upon pyrolysis to form rich Fe−Nx atomic active sites, and generate abundant micropores during high-temperature treatment; as a consequence, the resultant Fe-N/C catalyst contains rich catalytically active Fe−Nx sites and a hierarchical porous structure. The catalyst exhibits improved ORR activity that is superior to and close to that of Pt/C in alkaline and acidic solutions, respectively.  相似文献   
943.
The adsorption energies for single Ni atom on CuAl2O4(100) and (110) surfaces are 5.30 and 4.08 eV, respectively. The growth and aggregation of Ni can be effectively inhibited on the perfect CuAl2O4(100) surface. The adsorption of Ni on the spinel surface is accompanied by charge transfer. The interaction of Ni with CuAl2O4 surface is stronger than with the γ-Al2O3(110) surface.  相似文献   
944.
Covalent organic frameworks (COFs) have garnered immense scientific interest among porous materials because of their structural tunability and diverse properties. However, the response of such materials toward laser‐induced nonlinear optical (NLO) applications is hardly understood and demands prompt attention. Three novel regioregular porphyrin (Por)‐based porous COFs—Por‐COF‐HH and its dual metalated congeners Por‐COF‐ZnCu and Por‐COF‐ZnNi—have been prepared and present excellent NLO properties. Notably, intensity‐dependent NLO switching behavior was observed for these Por‐COFs, which is highly desirable for optical switching and optical limiting devices. Moreover, the efficient π‐conjugation and charge‐transfer transition in ZnCu‐Por‐COF enabled a high nonlinear absorption coefficient (β=4470 cm/GW) and figure of merit (FOM=σ1o, 3565) value compared to other state‐of‐the‐art materials, including molecular porphyrins (β≈100–400 cm/GW), metal–organic frameworks (MOFs; β≈0.3–0.5 cm/GW), and graphene (β=900 cm/GW).  相似文献   
945.
Photonic crystals (PCs) have been widely applied in optical, energy, and biological fields owing to their periodic crystal structure. However, the major challenges are easy cracking and poor structural color, seriously hindering their practical applications. Now, hydrophobic poly(tert‐butyl acrylate) (P(t‐BA)) PCs have been developed with relatively lower glass transition temperature (Tg), large crack‐free area, excellent hydrophobic properties, and brilliant structure color. This method based on hydrophobic groups (tertiary butyl groups) provides a reference for designing new kinds of PCs via the monomers with relatively lower Tg. Moreover, the P(t‐BA) PCs film were applied as the photoluminescence (PL) enhanced film to enhance the PL intensity of CdSe@ZnS QDs by 10‐fold in a liquid‐crystal display (LCD) device. The new‐type hydrophobic force assembled PCs may open an innovative avenue toward new‐generation energy‐saving devices.  相似文献   
946.
Multiple stretchability has never been demonstrated as supercapacitors because the hydrogel used cannot fully recover after being heavily deformed. Now, a highly reversibly stretchable all‐polymer supercapacitor was fabricated using a developed double network hydrogel (DN hydrogel) as electrolyte and pure polypyrrole (PPy) as electrode. The DN hydrogel provides excellent mechanical properties, which can be stretched up to 500 % many times and then restore almost 100 % of the original length. To fabricate the fully recoverable stretchable supercapacitor, we annealed a free‐standing pure conducting polymer film as electrode so that the electrodes induced retardance is minimized. The as‐fabricated DN hydrogel/pure conducting polymer supercapacitors can be perfectly recovered from 100 % strain with almost no residual deformation left and the electrochemical performance can be maintained even after 1000 stretches (but not bending).  相似文献   
947.
A significant growth of research on adaptive liquid lens is achieved over the past decades, and the field is still attracting increasing attentions, focusing on the transition from the current stage to the commercialized stage. The challenges faced are not limited to fabrication, material, small tuning range in focal lengths, additional control systems, limitations in special actuation methods and so on. In addition, the use of external driving parts or systems induce extra problem on bulky appearance, high cost, low reliability etc. Therefore, adaptive liquid lens will be an interesting research focus in both microfluidics and optofluidics science. This review attempts to summarize and focus on the droplet profile deformation under different driving mechanisms in tunable liquid microlens as well as the application in cameras, cell phone and so on. The driving techniques are generally categorized in terms of mechanisms and driving sources.  相似文献   
948.
Micro‐structure patterned substrates attract our attention due to the special and programmable wettabilities. The interaction between the liquid and micro/nano structures gives rise to controllable spreading and thus evaporation. For exploration of the application versatility, the introduction of nanoparticles in liquid droplet results in interaction among particles, liquid and microstructures. In addition, temperature of the substrates strongly affects the spreading of the contact line and the evaporative property. The evaporation of sessile droplets of nanofluids on a micro‐grooved solid surface is investigated in terms of liquid and surface properties. The patterned nickel surface used in the experiments is designed and fabricated with circular and rectangular shaped pillars whose size ratios between interval and pillars is fixed at 5. The behavior is firstly compared between nanofluid and pure liquid on substrates at room temperature. For pure water droplet, the drying time is relatively longer due to the receding of contact line which slows down the liquid evaporation. Higher concentrations of nanoparticles tend to increase the total evaporation time. With varying concentrations of graphite at nano scale from 0.02% to 0.18% with an interval at 0.04% in water droplets and the heating temperature from 22 to 85°C, the wetting and evaporation of the sessile droplets are systematically studied with discussion on the impact parameters and the resulted liquid dynamics as well as the stain. The interaction among the phases together with the heating strongly affects the internal circulation inside the droplet, the evaporative rate and the pattern of particles deposition.  相似文献   
949.
SnNb2O6 and Sn2Nb2O7 nanosheets were synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. Compared with Sn2Nb2O7 and the previously reported pure Sn-based anode materials, the SnNb2O6 electrode exhibited outstanding cycling performance.  相似文献   
950.
Ti4+ ions were introduced to the VO43- substituted Li3Fe2(PO4)3 by sol-gel method. Simultaneous substitution of Ti4+ for Fe3+ and VO43- for PO43- in the Li3Fe2(PO4)3 resulted in a net improvement in the rate capability and cycling performance, as compared with the single Ti4+ or VO43- substituted compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号