首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   19篇
化学   372篇
力学   1篇
数学   25篇
物理学   59篇
  2022年   7篇
  2021年   8篇
  2020年   18篇
  2019年   4篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   10篇
  2014年   15篇
  2013年   25篇
  2012年   23篇
  2011年   44篇
  2010年   18篇
  2009年   21篇
  2008年   19篇
  2007年   18篇
  2006年   30篇
  2005年   13篇
  2004年   15篇
  2003年   10篇
  2002年   10篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1989年   2篇
  1987年   2篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   7篇
  1974年   5篇
  1973年   2篇
  1971年   4篇
  1958年   2篇
  1944年   2篇
  1933年   2篇
  1927年   3篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
21.
The immune scavenger protein DC-SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC-SIGN have not been reported. Herein, we report the development and application of a mass-spectrometry-based approach to both uncover and characterise the effects of O-glycans on the stability of DC-SIGN. We first quantify the Core 1 and 2 O-glycan structures on the carbohydrate recognition and extracellular domains of the protein using sequential exoglycosidase sequencing. Using ion mobility mass spectrometry, we show how specific O-glycans, and/or single monosaccharide substitutions, alter both the overall collision cross section and the gas-phase stability of the DC-SIGN isoforms. We find that rather than the mass or length of glycoprotein modifications, the stability of DC-SIGN is better correlated with the number of glycosylation sites.  相似文献   
22.
23.
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins’ life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.  相似文献   
24.
25.
This paper describes the approach to bubble related phenomena using a novel 'acoustoelectrochemical' technique designed to investigate the physical and chemical effects of the acoustically induced motion of the bubble wall. In particular it describes the behaviour of a suspended gas bubble irradiated with sound of an appropriate frequency and pressure to induce bubble wall oscillation. The first electrochemical measurement of the growth of a bubble through rectified diffusion is demonstrated. The technique employed relies on the sensitivity of a scanning electrochemical microscope (SECM) deployed close to the gas/liquid interface of a bubble. The growth rate of the bubble (<0.1 microms(-1)) is reported. It will be also demonstrated that gas exchange across the phase boundary at the bubble wall, can be successfully probed when the bubble is stationary.  相似文献   
26.
Transient absorption spectroscopy is used to demonstrate that the electric dipole moment of the substrate cyclobutane thymine dimer affects the charge recombination reaction between fully reduced flavin adenine dinucleotide (FADH-) and the neutral radical tryptophan 306 (Trp306*) in Escherichia coli DNA photolyase. At pH 7.4, the charge recombination is slowed by a factor of 1.75 in the presence of substrate, but not at pH 5.4. Photolyase does bind substrate at pH 5.4, and it seems that this pH effect originates from the conversion of FADH- to FADH2 at lower pH. The free-energy changes calculated from the electric field parameters and from the change in electron transfer rate are in good agreement and support the idea that the substrate electric dipole is responsible for the observed change in electron transfer rate. It is expected that the substrate electric field will also modify the physiologically important from excited 1FADH- to the substrate in the DNA repair reaction.  相似文献   
27.

Background  

The kelch repeat protein muskelin mediates cytoskeletal responses to the extracellular matrix protein thrombospondin 1, (TSP1), that is known to promote synaptogenesis in the central nervous system (CNS). Muskelin displays intracellular localization and affects cytoskeletal organization in adherent cells. Muskelin is expressed in adult brain and has been reported to bind the Cdk5 activator p39, which also facilitates the formation of functional synapses. Since little is known about muskelin in neuronal tissues, we here analysed the tissue distribution of muskelin in rodent brain and analysed its subcellular localization using cultured neurons from multiple life stages.  相似文献   
28.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   
29.
A novel aluminium rich alloy for hydrogen storage has been discovered, ScAl0.8Mg0.2, which has very promising properties regarding hydrogen storage capacity, kinetics and stability towards air oxidation in comparison to hydrogen absorption in state-of-the-art intermetallic compounds. The absorption of hydrogen was found to be very fast, even without adding any catalyst, and reversible. The discovered alloy crystallizes in a CsCl-type structure, but decomposes to ScH2 and Al(Mg) during hydrogen absorption. Detailed analysis of the hydrogen absorption in ScAl0.8Mg0.2 has been performed using in situ synchrotron radiation powder X-ray diffraction, neutron powder diffraction and quantum mechanical calculations. The results from theory and experiments are in good agreement with each other.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号