首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   13篇
化学   662篇
晶体学   16篇
力学   9篇
数学   30篇
物理学   231篇
  2022年   4篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   13篇
  2015年   17篇
  2014年   19篇
  2013年   32篇
  2012年   36篇
  2011年   51篇
  2010年   39篇
  2009年   35篇
  2008年   41篇
  2007年   33篇
  2006年   49篇
  2005年   61篇
  2004年   50篇
  2003年   41篇
  2002年   32篇
  2001年   34篇
  2000年   18篇
  1999年   19篇
  1998年   6篇
  1997年   11篇
  1996年   12篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   20篇
  1991年   22篇
  1990年   15篇
  1989年   15篇
  1988年   7篇
  1987年   16篇
  1986年   13篇
  1985年   12篇
  1984年   16篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   17篇
  1979年   10篇
  1978年   11篇
  1977年   15篇
  1976年   5篇
  1975年   9篇
  1974年   6篇
  1973年   3篇
  1971年   2篇
  1968年   2篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
921.
Grafting of biocompatible polymer onto the surface of silica nanoparticles was achieved by radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), initiated by azo groups previously introduced onto the surface or by a system consisting of Mo(CO)6 and trichloroacetyl groups on the silica surface. Both of these systems have the ability to initiate graft polymerization of MPC, resulting in the formation of poly(MPC)-grafted silica, but the percentage of poly(MPC) grafting for the latter initiating system was much higher than that of the former. The amount of moisture that could be adsorbed onto the silica surface was found to increase with increasing poly(MPC) grafting. This indicates that grafting of poly(MPC) onto the silica surface markedly increases the hydrophilic nature of the surface. The contact angle of water in composites prepared from poly(vinyl alcohol) and poly(MPC)-grafted silica was found to decrease with increasing poly(MPC)-grafted silica content. When poly(MPC)-grafted silica was added to water containing a small amount of chloroform, it was found to act as stabilizer for droplets of chloroform. In addition, according to tests by the Lee-White method, poly(MPC)-grafted silica shows non-thrombogenic characteristics.  相似文献   
922.
We have developed a unique photo‐cross‐linking approach for immobilizing a variety of small molecules in a functional‐group‐independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on‐array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo‐cross‐linked microarrays of about 2000 natural products and drugs were constructed. This photo‐cross‐linked microarray format was found to be useful not merely for ligand screening but also to study the structure–activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo‐cross‐linking process.  相似文献   
923.
Poly(styrene) (PST) coatings of monodispersed colloidal metal oxide particles by surface grafting to poly(N-vinyl-2-pyrrolidone) (ST–PVP) or quaternized poly(4-vinylpyridine) (ST-PVPy(Me)) macromer, having a vinylphenylene end group, were investigated. Radical polymerization of styrene (ST) in ethanolic silica colloid in the presence of ST-PVP successfully led to the formation of monodispersed PST/PVP copolymer/SiO2composites. The addition of divinylbenzene (DVB) to the reaction system gave SiO2 composites coated with crosslinked PST. Graft-polymerization of ST to ST-PVP also took place on TiO2, CeO2 and Al(OH)3 colloidal particles in ethanolic solution. However, ST-PVPy(Me) adsorbed on colloidal silica did not effectively graft PST.  相似文献   
924.
925.
In situ X‐ray absorption fine structure (XAFS) analyses were performed on rechargeable molecular cluster batteries (MCBs), which were formed by a lithium anode and cathode‐active material, [Mn12O12(CH3CH2C(CH3)2COO)16(H2O)4] with tert‐pentyl carboxylate ligand (abbreviated as Mn12tPe), and with eight Mn3+ and four Mn4+ centers. This mixed valence cluster compound is used in an effort to develop a reusable in situ battery cell that is suitable for such long‐term performance tests. The Mn12tPe MCBs exhibit a large capacity of approximately 210 Ah kg−1 in the voltage range V=4.0–2.0 V. The X‐ray absorption near‐edge structure (XANES) spectra exhibit a systematic change during the charging/discharging with an isosbestic point at 6555 eV, which strongly suggests that only either the Mn3+ or Mn4+ ions in the Mn12 skeleton are involved in this battery reaction. The averaged manganese valence, determined from the absorption‐edge energy, decreased monotonically from 3.3 to 2.5 in the first half of the discharging (4.0>V>2.8 V), but changed little in the second half (2.8>V>2.0 V). The former valence change indicates a reduction of the initial [Mn12]0 state by approximately ten electrons, which corresponds well with the half value of the observed capacity. Therefore, the large capacity of the Mn12 MCBs can be understood as being due to a combination of the redox change of the manganese ions and presumably a capacitance effect. The extended X‐ray absorption fine structure (EXAFS) indicates a gradual increase of the Mn2+ sites in the first half of the discharging, which is consistent with the XANES spectra. It can be concluded that the Mn12tPe MCBs would include a solid‐state electrochemical reaction, mainly between the neutral state [Mn12]0 and the super‐reduced state [Mn12]8− that is obtained by a local reduction of the eight Mn3+ ions in Mn12 toward Mn2+ ions.  相似文献   
926.
For a deeper understanding of allyl polymerization mechanism, the reinitiation efficiency of resonance‐stabilized monomeric allyl radical was pursued because in allyl polymerization it is commonly conceived that the monomeric allyl radical generated via the allylic hydrogen abstraction of growing polymer radical from monomer, i.e., “degradative monomer chain transfer,” has much less tendency to initiate a new polymer chain and, therefore, this monomer chain transfer is essentially a termination reaction. Based on the renewed allyl polymerization mechanism in our preceding article, the monomer chain transfer constant in the polymerization of allyl benzoate was estimated to be 2.7 × 10?2 at 80 °C under the polymerization condition, where the coupling termination reaction of growing polymer radical with allyl radical was negligible and, concurrently, the reinitiation reaction of allyl radical was enhanced significantly. The reinitiation efficiencies of monomeric allyl radical were pursued by the dead‐end polymerizations of allyl benzoate at 80, 105, and 130 °C using a small amount of initiators; they increased remarkably with raised temperature. Thus, the enhanced reinitiation reactivity of allyl radical at an elevated temperature could bias the well‐known degradative monomer chain transfer characteristic of allyl polymerization toward the chain transfer in common vinyl polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
927.
Quantitative analysis of reacted silanol groups in silica nanoparticles modified chemically with monochlorosilanes was performed by 1H NMR after treatment with cesium fluoride. Silica nanoparticles were modified chemically by the reaction between the silanol groups and monochlorosilanes, and the structure of the organic moiety anchored onto the silica surface was confirmed with solid‐state 13C NMR. As monochlorosilanes react with silanol groups at 1:1 ratio unlike di‐ or trichlorosilanes, the number of the silanes introduced into silica nanoparticles equals that of reacted silanol groups. Organically modified silica nanoparticles were dissolved using cesium fluoride, and the amount of the soluble organic compounds originated from the introduced silanes was determined by a 1H NMR internal standard method using pyrene as the reference. Those values determined by 1H NMR were in good agreement with those determined by elemental analysis. Thus, the number of reacted silanol groups per one particle was calculated on the basis of the results obtained by the 1H NMR method, and the values were highly dependent on the steric structure of the introduced silanes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
928.
In the development of orthogonal extra base pairs for expanding the genetic alphabet, we created novel, unnatural base pairs between fluorophore and quencher nucleobase analogues. We found that the nucleobase analogue, 2-nitropyrrole (denoted by Pn), and its 4-substitutions, such as 2-nitro-4-propynylpyrrole (Px) and 4-[3-(6-aminohexanamido)-1-propynyl]-2-nitropyrrole (NH(2)-hx-Px), act as fluorescence quenchers. The Pn and Px bases specifically pair with their pairing partner, 7-(2,2'-bithien-5-yl)imidazo[4,5-b]pyridine (Dss), which is strongly fluorescent. Thus, these unnatural Dss-Pn and Dss-Px base pairs function as reporter-quencher base pairs, and are complementarily incorporated into DNA by polymerase reactions as a third base pair in combination with the natural A-T and G-C pairs. Due to the static contact quenching, the Pn and Px quencher bases significantly decreased the fluorescence intensity of Dss by the unnatural base pairings in DNA duplexes. In addition, the Dss-Px pair exhibited high efficiency and selectivity in PCR amplification. Thus, this new unnatural base pair system would be suitable for detection methods of target nucleic acid sequences, and here we demonstrated the applications of the Dss-Pn and Dss-Px pairs as molecular beacons and in real-time PCR. The genetic alphabet expansion system with the replicable, unnatural fluorophore-quencher base pair will be a useful tool for sensing and diagnostic applications, as well as an imaging tool for basic research.  相似文献   
929.
The time evolution of the luminescence of the colored form of a furylfulgide dispersed at various concentrations in a poly(methyl methacrylate) film was measured as a function of the luminescence photon energy. The observed decay time of the luminescence is about 1–2 ns and one order of magnitude shorter than the radiative lifetime (14 ns) estimated from the absorption intensity. The decay time is independent of temperature below 77 K. These results suggest that the non-radiative tunneling process from the excited state to the ground state is responsible for the decay.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号